Large-Scale Ozone and Aerosol Distributions, Air Mass Characteristics, and Ozone Fluxes Over the Western Pacific Ocean in Late-Winter/Early-Spring

Edward V. Browell¹, Marta A. Fenn², Carolyn F. Butler², William B. Grant¹, Vincent G. Brackett², Johnathan W. Hair¹, Melody A. Avery¹, Reginald E. Newell^{3,13}, Yuanlong Hu³, Henry E. Fuelberg⁴, Daniel J. Jacob⁵, Bruce E. Anderson¹, Elliot L. Atlas⁶, Donald R. Blake⁷, William H. Brune⁸, Jack E. Dibb⁹, Alan Fried⁶, Brian G. Heikes¹⁰, Glen W. Sachse¹, Scott T. Sandholm¹¹, Hanwant B. Singh¹², Robert W. Talbot⁹, Stephanie A. Vay¹, Rodney J. Weber¹¹, and Karen B. Bartlett⁹

¹Atmospheric Sciences, NASA Langley Research Center, MS-401A, Hampton, VA 23681

²Science Applications International Corporation, Hampton, VA

³Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA

⁴Department of Meteorology, Florida State University, Tallahassee, FL
 ⁵Department of Earth and Planetary Science, Harvard University, Cambridge, MA
 ⁶Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO
 ⁷Department of Chemistry, University of California, Irvine, CA
 ⁸Department of Meteorology, Pennsylvania State University, University Park, PA
 ⁹Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH
 ¹⁰Graduate School of Oceanography, University of Rhode Island, Narragansett, RI

¹¹Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA

¹²NASA Ames Research Center, Moffett Field, CA

¹³deceased

Submitted for TRACE-P Special Issue

Journal of Geophysical Research-Atmospheres

Revised April 2, 2003

Abstract

Large-scale measurements of ozone (O₃) and aerosol distributions were made from the NASA DC-8 aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) field experiment conducted in February-April 2001. Remote measurements were made with an airborne lidar to provide O₃ and multiple-wavelength aerosol backscatter profiles from near the surface to above the tropopause along the flight track. In situ measurements of O₃, aerosols, and a wide range of trace gases were made onboard the DC-8. Five-day backward trajectories were used in conjunction with the O₃ and aerosol distributions on each flight to indicate the possible origin of observed air masses, such as from biomass burning regions, continental pollution, desert regions, and oceanic regions. Average latitudinal O₃ and aerosol scattering ratio distributions were derived from all flights west of 150°E, and these distributions showed the average latitude and altitude dependence of different dynamical and chemical processes in determining the atmospheric composition over the western Pacific. TRACE-P (TP) showed an increase in the average latitudinal distributions of both O₃ and aerosols compared to PEM-West B (PWB), which was conducted in February-March 1994. O₃, aerosol, and potential vorticity levels were used to identify nine air mass types and quantify their frequency of occurrence as a function of altitude. This paper discusses the characteristics of the different air mass types encountered during TP and compares them to PWB. These results confirmed that most of the O₃ increase in TP was due to photochemistry. The average latitudinal eastward O₃ flux in the western Pacific during TP was found to peak near 32°N with a total average O₃ flux between 14-46°N of 5.2 Tg/day. The eastward total CO flux was calculated to be 2.2 Tg-C/day with ~6% estimated from Asia. The Asian flux of CO₂ and CH₄ was estimated at 4.9 and 0.06 Tg-C/day.

1. Introduction

The TRansport And Chemical Evolution over the Pacific (TRACE-P) field experiment was conducted from 26 February to 9 April 2001 over the Pacific Ocean with flights from Edwards Air Force Base, California, Guam, Hong Kong, Tokyo, and Kona, Hawaii [Jacob et al., this issue]. The objectives of TRACE-P (TP) were to determine the pathways for outflow of chemically and radiatively important gases and aerosols and their precursors from eastern Asia to the western Pacific [Fuelberg et al., this issue; Koike et al., this issue; Liu et al., this issue]; to determine the chemical evolution of the Asian outflow over the western Pacific [Pierce et al., this issue]; and to understand the ensemble of processes that control this evolution [Lefer et al., this issue]. TP was preceded by two exploratory airborne field experiments, Pacific Exploratory Missions (PEM), conducted over the western Pacific during the late summer of 1991 (PEM West-A (PWA) [Hoell et al., 1996]) and the late winter of 1994 (PEM West B (PWB) [Hoell et al., 1997]). The objectives of these field experiments were to detect and study the Asian outflow in times of weak and strong outflow, respectively. These field experiments revealed the seasonal and spatial variability in the outflow from Asia and the various air mass characteristics observed during these different seasons [Browell et al., 1996a; Hoell et al., 1996, 1997; Fenn et al., 1997]. Since the time of PWB, increased interest in the origin, chemistry, and fate of pollution emerging from the Asian continent [Jacob et al., 1999; Jaffe et al., 1999; Mauzerall et al., 2000; Staudt et al., 2001; Liu et al., 2002] and the anticipated growth in the level of pollution in coming decades [Streets et al., 1999], led to the more focused objectives of the TP field experiment.

During TP, the NASA Langley airborne UV DIAL (DIfferential Absorption Lidar) system was flown on the NASA DC-8 aircraft and operated simultaneously in the nadir and zenith modes to collectively measure vertical profiles of O₃, aerosols, and clouds from near the surface

to the upper troposphere along the aircraft flight track. In situ measurements of O₃ were also made on the DC-8 to augment the lidar remote measurements and to provide a reference for correlating with the broad range of in situ gas and aerosol measurements also made on the DC-8. The flight tracks of the DC-8 in the western Pacific during TP are shown in Figure 1. A discussion of the TP science objectives, the characteristics of the instrumentation on the DC-8, and the DC-8 flight tracks over the entire Pacific Ocean are given in the overview paper by Jacob et al. [this issue].

Seventeen DC-8 science flights were made during TP with major bases of operations in Hong Kong, Yokota, Japan, and Hawaii. Local flights were performed from these locations, and longrange survey flights were conducted between these bases and on the out-bound and return flights between NASA Dryden Flight Research Center at Edwards Air Force Base, California, and Kona, Hawaii. Details about the flight objectives and the specifics of each flight are given in the overview paper [Jacob et al., this issue]. The survey flights of the DC-8 consisted mainly of en route ascents and descents with short, typically less than 20 minute, constant altitude legs at specific altitudes of interest that were identified using the remote sensing real-time lidar data. This allowed for extensive vertical sampling of the troposphere for chemical characterization along the flight track. On local flights, the general strategy was to use the lidars to survey the troposphere along the flight track and to select the geographic regions and altitudes of interest for in situ airborne sampling. This approach allowed for the real-time synergistic use of data from the various sensors on the DC-8 to maximize the efficiency of the sampling strategy. This paper discusses the large-scale characteristics of the air masses observed on several TP flights in the western Pacific and their possible origins; the average latitudinal O₃ and aerosol distributions observed during TP and their relationship to various dynamical and chemical processes; the

frequency of observation of different air mass types in different regions and altitudes; the average aerosol and chemical composition of these air mass types; comparison of these results with results made during PWB; the eastward flux of O₃ and its variation by latitude and altitude and air mass type during TP; and the eastward flux estimates for CO, CO₂, and CH₄.

2. Instrumentation and Methodology

The NASA Langley Research Center's (LaRC) Airborne UV DIAL system has been described in detail in several previous publications [see e.g., Richter et al., 1997; Browell et al., 1998]. The LaRC Airborne DIAL system makes simultaneous measurements below and above the DC-8 for O₃ and multi-wavelength aerosol backscatter measurements (576 and 1064 nm in nadir and 599 and 1064 nm in zenith) from near the surface to above the tropopause. The wavelength dependence of backscattering is derived from the visible (576/599 nm) and IR (1064 nm) measurements to provide information on the aerosol size distributions. In the nadir, simultaneous measurements of aerosol depolarization were also made at 576 nm for the detection of nonspherical aerosols, such as desert dust.

The airborne DIAL system uses two 30-Hz, frequency-doubled Nd:YAG lasers to sequentially pump two dye lasers that are frequency-doubled into the UV to produce the on-line (288.2 nm) and off-line (299.6 nm) wavelengths for the DIAL O₃ measurements during TP. The residual 1064-nm and 576/599-nm beams from the frequency-doubling process of the Nd:YAG and dye lasers, respectively, are also transmitted with the UV DIAL wavelengths. As a result, four laser beams are transmitted simultaneously into the atmosphere below (288.2, 299.6, 576.4, and 1064 nm) and above (288.2, 299.6, 599.2, and 1064 nm) the aircraft for lidar measurements of O₃, aerosols, and clouds from near the surface to about 3 km above the tropopause. In

addition to the normal lidar return detection at each of the laser wavelengths, the nadir 576.4-nm channel uses two separate detectors to determine the amount of depolarization introduced by aerosol scattering. This airborne DIAL system and the O₃, aerosol scattering ratio (ASR), and aerosol depolarization (DPL) techniques have been used extensively in several recent tropospheric chemistry field experiments [see e.g., Fenn et al., 1999; Browell et al., 2001]. In addition, the wavelength dependence of aerosol backscattering (WVD) in this investigation was derived from a power law combination of the visible aerosol scattering ratio (ASR_{VS}) and the IR aerosol scattering ratio (ASR_{IR}) using the formulation presented by Browell et al. [1985] and subsequently used by Sasano and Browell [1989] to characterize the optical properties of different aerosol types.

The UV DIAL system has an absolute accuracy for O₃ measurements of better than 10% or 2 ppbv (parts per billion by volume) and a measurement precision of 5% or 1 ppbv with a vertical resolution of 300 m and an averaging time of 5 minutes (about 70-km horizontal resolution at DC-8 ground speeds) [Browell, 1983; Browell et al., 1983, 1985]. Intercomparisons between in situ and UV DIAL O₃ measurements were made throughout TP, and these results confirmed that the above measurement accuracy was being achieved, if not exceeded, during this field experiment.

Since the UV DIAL remote O₃ profiles begin about 750 m above and below the aircraft, the O₃ distribution across this region is estimated by interpolating between the nadir and zenith UV DIAL measurements with the in situ O₃ measurement used to constrain the interpolation in between. Ozone distributions were also extrapolated from the lowest UV DIAL measurement altitude (usually below 1 km) to the surface using the gradient in O₃ concentrations determined from the in situ measurements. These techniques were previously discussed for the UV DIAL

O₃ distributions from the PEM Tropics A [Fenn et al., 1999] and PEM Tropics B [Browell et al., 2001] field experiments.

Meteorological analyses of the potential vorticity (PV) distributions along the flight track were used to indicate the fraction of observed O_3 that could be attributed to stratosphere-troposphere exchange (STE) using an O_3 to PV ratio derived in the lower stratosphere. This method has been previously used by Browell et al. [1996a, 2001] and Fenn et al. [1999] in a number of previous tropospheric O_3 studies. The specific O_3 to PV ratio used in the current air mass characterization analysis for TP is discussed in section 4.

Five-day backward trajectories are also used to indicate the possible origin of observed air masses. These backward trajectories were calculated using the Florida State University (FSU) kinematic backward trajectory model. Air parcels along the flight track were selected at specific pressure altitudes, and these air parcels were followed back to their origins five days earlier (unless the trajectory terminates early at the surface). The consistency of the backward trajectories can be tested by using an ensemble of air parcels. This approach is discussed by Fuelberg et al. [this issue]. The backward trajectories shown in this paper are used to describe the general characteristics of the air mass's source region.

3. Results and Discussion

3.1 Air Masses Observed Over the Western Pacific

An example of the resulting O₃ and aerosol distributions observed during TP is shown in Plate 1 (note: all of the UV DIAL data are posted at our web site: http://asd-www.larc.nasa.gov/). The data were obtained on a long-range survey flight from Guam to Hong Kong on 3-4 March 2001, and the large-scale variations of O₃, ASR_{VS}, WVD, and DPL are shown for this flight.

The flight track is shown superimposed on a GOES-8 visible satellite image, and the aircraft flight altitude can be seen as a black line in the aerosol cross sections. A low-level front was crossed at about 3:00 UT at 22°N/134°E, and most of the clouds seen in the GOES-8 image are near the surface and readily seen in the ASR_{VS} data. The tops of the optically-thick clouds can be readily seen in the lidar data because they have a white (data void) region on the other side of the highly-scattering cloud top region. Optically-thin clouds exhibit an ASR_{VS} that exceeds 5, but they are not so highly attenuating that a measurement cannot be made on the other side of it, although there may be some underestimation of the scattering from the other side due to that attenuation. This is true for both optically-thin low-level clouds as well as cirrus clouds in the mid to upper troposphere.

The location of the low-level front coincides with an abrupt change in O₃ levels at the frontal location. The O₃ levels SE of the front were generally <30 ppbv, which is indicative of the clean marine lower-troposphere over the Pacific; while NW of the front, O₃ was generally >40 ppbv with some regions up to 70 ppbv, which is impacted significantly by direct outflow from Asia behind the front. The characteristics of the aerosols also changed dramatically across the front. The ASR_{VS} above the marine boundary layer (MBL) increased abruptly in the Asian outflow NW of the front, and the WVD and DPL data showed that there was an increase in large (low WVD), depolarizing (non-spherical) aerosols that were present in the outflow below about 4-5 km. This was particularly true in general north of 19°N with enhanced depolarization all the way to the surface at the northern most point. The low-level 5-day backward trajectories (not shown) indicated that north of about 20°N the Asian outflow could be a mixture of continental pollution and desert aerosols with the effect being stronger with increasing latitude. This situation was found to be common in the low-level Asian outflow during TP.

In the mid-troposphere (5-10 km), the air mass observed during this flight was more homogeneous and showed little influence from the low-level front. The O₃ levels were in the 50-70 ppbv range, which is significantly enhanced over the clean marine O₃ levels, and the aerosols had low ASR_{VS} (<0.15), low DPL (<1 %), and enhanced WVD (2-2.5), which indicates small, spherical aerosols with low aerosol number densities. The 5-day backward trajectories are also shown in Plate 1 for air ending at 300 hPa (~8-km altitude) along the flight track. These backward trajectories show that the air came from the region of SE Asia where biomass burning was occurring [Heald et al., this issue; Liu et al., this issue], and the air only slightly descended during the advection to the measurement region. Convective transport into the mid to upper troposphere of air from biomass burning is consistent with the observation of photochemically-produced O₃ and the presence of small aerosols that are left when the air goes through the cloud convection process. These characteristics of air from biomass burning in the mid troposphere were frequently found during TP, which will be discussed more in Section 3.

The low-O₃ regions in the upper troposphere resulted from convective pumping of low-O₃ air from near the surface in the tropics. This was a common feature observed in the western Pacific during PWA [Browell et al., 1996a] and PWB [Fenn et al., 1997; Browell et al., 1998]. Cirrus clouds, which also can result from this same convection, can be seen above 14 km before 2:20 UT, and they had enhanced ASR_{VS} (>2) and low WVD (~0), which is indicative of sub-visible cirrus clouds containing large ice particles.

An example of the outflow of continental pollution was observed on the flight from Okinawa to Hong Kong on 10 March 2001, which had a long-flight leg over the Yellow Sea. Plate 2 shows the O_3 and ASR_{IR} obtained on this flight. Elevated levels of O_3 and ASR_{IR} were found below ~4 km over the entire region from 20-37°N. The pollution was flowing easterly from

China at all altitudes in the lower troposphere. Backward trajectories, ending at 500 hPa over the Yellow Sea, are shown in Plate 2, and some of them start near the surface in the western Mediterranean region. It is clear that there are many sources of aerosols and O₃ that have contributed to the observed high level of pollution that was observed in the low to mid troposphere in this region. Non-cloud ASR_{IR} levels of >10 were observed in the lower troposphere over the Yellow Sea with only moderate levels of O₃ (60-70 ppbv), which is attributed to more recent emissions of pollutants from coastal regions of China. The GOES visible image in Plate 2 shows the band of clouds that were crossed from ~30 to 22°N on the southerly flight leg, and these optically thick clouds can be seen in the ASR_{IR} data with tops decreasing in altitude from 12 to 6 km, respectively. Above the clouds and in the lower aerosol loaded region above ~6 km and north of 32°N, the elevated O₃ is generally correlated with enhanced PV associated with a stratospheric intrusion and a low tropopause (~9.5 km) near the northern most point at $\sim 37^{\circ}$ N. The downward sloping tropopause to the north is reflected in the O₃ data above 14 km. Based on the backward trajectories, the low O₃ and aerosol levels south of ~22°N and below ~8 km are associated with clean marine air, and the O₃ maximum near 10 km in this region was from a biomass burning source in SE Asia. This biomass burning feature is similar to that previously discussed for the flight from Guam to Hong Kong on 3-4 March 2001 (Plate 1).

Cross sectional data were obtained on O₃, ASR_{IR}, ASR_{VS}, WVD, and DPL on each flight during TP, and when coupled with backward trajectory and PV analyses, they showed a wide range of atmospheric conditions and processes that contributed to producing the large-scale distribution of O₃ and aerosols over the western Pacific. The O₃ cross sections from each flight were used extensively to evaluate the predictive capability of chemical transport models, and it

was found that these models can reasonably simulate the regional tropospheric O₃ distribution in the free troposphere [Pierce et al., this issue; Wild et al., this issue]. The following section addresses the large-scale average distributions of O₃ and aerosols observed during TP and compares them to what was observed during PWB.

3.2 Average Distributions and Air Mass Characteristics

To derive the average latitudinal and longitudinal O₃ and aerosol distributions observed during TP, each individual flight was initially averaged into a latitudinal/longitudinal cross section with bins of 30 m in the vertical and 0.25° of latitude or 0.5° of longitude in the horizontal. This method is discussed in more detail by Browell et al. [1996b]. To eliminate biasing of the average background aerosol cross sections by clouds, a cloud detection technique was used with a nominal cloud threshold of ASR_{VS}>10 in the low to mid troposphere and >0.5 in the upper troposphere (slightly variations in criteria were needed on some flights). Aerosol data within 90 m of a cloud were omitted from the average as were potentially attenuated aerosol data on the far side of a cloud. This approach was first used by Browell et al. [in press/2002] to investigate the springtime trend in aerosols during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) field experiment in 2000.

The average latitudinal/longitudinal distributions from all the flights were equally weighted and averaged together to arrive at the overall average latitudinal/longitudinal distribution for the campaign. Calculations of the average latitudinal distributions were limited to the western Pacific region (<150°E), and the average longitudinal distributions were separately calculated for the 10-20°N, 20-30°N, and 30-50°N latitude regions.

The average latitudinal O₃ and ASR_{VS} distributions in the western Pacific are shown in Plate

3. The full altitude range of the O₃ and ASR_{VS} data was used to produce the distribution on the

left of Plate 3 (All). The O₃ distribution clearly shows the latitudinal variation in the tropopause height from 17 km at 20°N to 8.5 km at 46°N with an abrupt decrease in height near 30°N, which corresponds to the vicinity of the subtropical jet. The irregular structure in the average O₃ data north of 30°N is associated with the variability in the stratospheric intrusions, which are very frequently observed in this region. Some of the intrusions extend into the troposphere as can be readily seen in the O₃ cross section. The average ASR_{VS} above the tropopause is near the background levels for these aerosol measurements (<0.05). In order to get a better indication of the variability of tropospheric O_3 and aerosols, the cross sections of O_3 for the individual flights were used to define the tropopause level, either by using the gradient technique, as previously described by Browell et al. [1996b], or the 100-ppbv level if there were not enough data to use the gradient technique. To avoid biasing of the average tropospheric O₃ and aerosol cross sections for each flight, all O₃ and ASR data were excluded within 1 km of the tropopause or where O₃ exceeds 100 ppbv. The aerosol data were also limited to the same altitude range as defined by the tropospheric O₃ data. The resulting average tropospheric O₃ and ASR_{VS} distributions are shown beside the combined distributions in Plate 3.

The above analysis technique removes the O₃ above the tropopause and the high O₃ in the direct intrusion events, but an enhancement in O₃ just below the tropopause is clearly evident in the average cross section. A major enhancement in O₃ can also be seen in the mid troposphere (8-10 km) from 25-34°N, which is in the vicinity of where the major intrusions were occurring. The general characteristics of the O₃ distribution reflects the O₃ destruction near the surface (<2 km) in the tropics (<20°N) [Thompson et al., 1993]; convection of low-O₃ surface air into the upper troposphere [Pickering et al., 2001]; transport of O₃ from subtropics and mid latitudes into the tropics in the mid troposphere; and various sources of enhanced O₃ (stratospheric and

photochemical) throughout the troposphere north of 20°N. In the 0-8-km range from 25-46°N, the median O₃ value was found to be 58.1 ppbv. The aerosol distribution shows an increasing influence of continental sources with latitude up to about 45°N. Since the stratospheric aerosol loading is low compared to tropospheric levels, as can be seen by comparing the two aerosol figures in Plate 3, the increase in aerosols with increasing latitude is primarily due to easterly advection of continental pollution, which includes dust aerosols [Murayama et al., 2000; Wang et al., 2000; Sun et al., 2001; Pierce et al., this issue]. The median value of ASR_{VS} in the 0-8-km, 25-46°N region was found to be 0.74. The low aerosol loading in the upper troposphere south of 30°N is associated with the removal of aerosols by cirrus clouds.

The average latitudinal PV distribution was derived using the same approach described above, and the results are shown in Plate 4. The average total PV cross section exhibits the same general features in the tropopause behavior that was observed in the average O₃ cross section shown in Plate 3. The locations of the major intrusions are well represented in the PV distribution north of 26°N. The PV distributions were masked using the tropospheric O₃ data as discussed above, and the result is shown in the lower panel of Plate 4. The region of high residual PV below the tropopause corresponds to the region of enhanced O₃ shown in Plate 3 (upper right panel). This is a strong indication that most of this O₃ is of stratospheric origin as might be expected this close to the tropopause. There are a considerable number of enhanced PV levels (PVU>4, which represents O₃ levels >25 ppbv (to be discussed later)) throughout most of the troposphere north of 26°N. At the same time, this is the region which has considerable aerosol loading (ASR_{VS}>0.5) and enhanced O₃ (>55 ppbv). One region that has enhanced O₃ in it with no enhanced PV is the region in the mid troposphere (6-11 km) south of 28°N with the region expanding to 2-12 km near 25°N. This is the region where the biomass burning emissions

were predominantly observed [Heald et al., this issue] as mentioned in the discussion of Plates 1 and 2. Based on O₃, aerosols, and PV distributions, the troposphere north of 26°N is a complex mixture of STE, pollution advection, and photochemical processes.

PWB was conducted about 3 weeks earlier in the same season, and the average tropospheric latitudinal O₃ and ASR_{VS} distributions observed for this experiment are presented in Plate 5. The same criteria and methodology were used for deriving these distributions as for the TP cross sections shown in Plate 3. As can be seen in the plate, the latitude coverage for PWB in the western Pacific (10°S-57°N) was much larger than for TP (14-46°N). As a result, the low-O₃ region near the surface and in the upper troposphere in the tropics is even better characterized than what can be seen in the TP O₃ data. The O₃ loss in the Southern Hemispheric (SH) air near the surface and its transport through deep convection into the upper troposphere has been previously discussed by Browell et al. [2001], and it is graphically represented in the average O₃ distribution shown in Plate 5. The enhanced O₃ just below the tropopause is seen in the PWB data as it was for TP, although the amount of enhanced O₃ in the vicinity of the intrusions appears to be less during PWB. The O₃ distribution in PWB across the troposphere was remarkably uniform (40-60 ppbv) below about 8 km from 16 to 52°N with a median of 48.9 ppbv in the 25-46°N region. The average aerosol loading increased in the free troposphere north of about 20°N, as it did for TP, and ASR_{VS} had a median value of 0.36 in the 0-8-km, 25-46°N region.

The average O_3 and ASR_{VS} levels for TP were higher than that observed during PWB, and Plate 6 shows the cross sectional differences between the two campaigns (TP-PWB). Only in the lower troposphere south of about 25°N was the O_3 in TP slightly less than in PWB. Everywhere else, the TP O_3 was higher than in PWB. Over the entire cross section the O_3 increased by a

median value of 7.1 ppbv. In the region north of 25°N, the O₃ median increase was 9.9 ppbv, which represents a 20% increase in O₃ from a PWB value of 49.1 ppbv. Below 8 km in the same latitude range, the median O₃ increase was 9.4 ppbv (19%). The difference in the ASR_{VS} distributions is also shown in Plate 6, and it shows that most of the increase in the TP aerosol loading was in the 0-8-km, 25-46°N region with a median ASR_{VS} increase of 0.28, which is a 78% increase over the PWB value.

To provide insight into the possible changes associated with STE between TP and PWB, the average latitudinal PV distribution for PWB was calculated and subtracted from the average PV distribution for TP (Plate 4), and the result is shown in Plate 6. There is a general increase in PV nearly everywhere except in the mid to upper troposphere in the tropics and in the regions of large negative PV differences near 10 km at 31°N and near 6 km at 44°N. These features result from PV analyses in the vicinity of several intrusions during PWB that did not spatially coincide with the observed intrusions. The spatial inconsistency between the PV analysis and the O₃ observations results in a residual artifact of high PV that can get into the average PV cross section. The overall increase in PV between the two campaigns is clearly evident. To estimate the amount of O₃ associated with STE and the PV difference, we use an assumed O₃ to PV ratio of 6.4 ppbv/PVU (to be discussed in next section) to convert the PV difference plot to a stratospheric equivalent O₃ distribution using a different scale in Plate 6. The median value for the equivalent O₃ increase was found to be 5.6 ppbv for the entire cross section and 10.4 ppbv for the 0-8-km, 25-46°N region. This indicates that a significant portion of the difference in the O₃ levels between the two campaigns may be due to increased STE in TP compared to PWB, and this may be associated with the slightly later time frame for the TP campaign, which is also associated with increased STE activity into the springtime.

The average longitudinal O₃ and aerosol cross sections in different latitude regions are shown in Plate 7. Gaps in the data represent regions where there were either no flights or an altitude range that was not covered with any measurements in the flights that were made. In the tropics (10-20°N), the general trends in O₃ and aerosols were similar to those previously mentioned in the tropical western Pacific (west of 150°E). The region of low O₃ and low aerosol scattering in the upper troposphere were significantly deeper in the 150-190°E region covering the entire 5-16-km region near 180°E. In the lower troposphere east of 165°E a layer was observed centered at ~3 km with significantly enhanced O₃ and aerosols. This layer appeared to be contiguous with a deep layer of O₃ and aerosols covering most of the troposphere near 200°E. Backward trajectories showed that this air was transported from Asia across the northern Pacific, around a high pressure system, and into the tropics. This is an entirely different transport regime than the more direct eastward transport of biomass burning air which is responsible for the mid tropospheric enhanced O₃ and aerosols in the western Pacific.

In the subtropical region (20-30°N), the general nature of the O₃ and aerosol distribution is very different between west of 145°E and east of 178°E. West of 145°E, the O₃ distribution was more uniform across the troposphere with a slight increase in O₃ across the mid troposphere. The aerosols were mostly below about 5 km with very low aerosol loading in the upper troposphere. East of 145°E, and more particularly, east of 178°E (due to a large data gap), there was enhanced O₃ and aerosols across nearly the entire troposphere. This was due to the outflow from Asia that occurs to the north of this region and then is transported equatorward around a climatological anticyclonic feature in the western Pacific [Fuelberg et al., this issue]. This type of long-range transport of Asian aerosols to Hawaii has been previously reported by Perry et al. [1999]. While the aerosols observed in TP indicate a continental source, some of the enhanced

O₃ could also be from STE activity north of 30°N, which is where most of the STE was observed to be occurring in the western Pacific (see Plates 3 and 4). In the 30-50°N mid latitude region, O₃ is enhanced across all of the troposphere at all longitudes; however, there appears to be more O₃ in the lower troposphere below 5 km west of 180°E than in the eastern Pacific (east of about 210°E). There is significant aerosol loading throughout the low to mid troposphere in the western Pacific, which is associated with the eastward advection of continental pollution and dust, particularly behind fronts. While the aerosol loading was found to generally decrease in the free troposphere to the east of 150°E, there was still significant aerosol loading observed across the entire Pacific in this latitude band.

3.3 Air Mass Characterization

3.3.1 Air mass types and observations. Based on O₃, ASR_{VS}, and PV levels observed on each TP flight, air mass types were identified and quantified based on the fraction of the time they were observed in different regions over the Pacific as a function of altitude. This approach has been used on several previous tropospheric field experiments over the Pacific [Browell et al., 1996a, 2001; Fenn et al., 1997, 1999]. In this method, an O₃ profile is designed to allow for the discrimination of different types of air masses that have localized variations due to recent source and sink processes. The reference O₃ profile used for TP (and PWB) is shown in Figure 2. Above 5 km, this profile is the same as was used in the PWA air mass characterization [Browell et al., 1996a], but from 5 km to the surface, the TP profile decreases linearly to 33 ppbv, whereas for PWA the profile decreased linearly to 12 ppbv due to the predominance of much cleaner, low-O₃ marine air that was observed in the westerly flow over the western Pacific during the summertime [Browell et al., 1996a]. In addition to the O₃ reference profile, the amount of aerosol loading as defined by the ASR_{VS} was also used to discriminate between air with low

aerosol loading (defined as ASR_{VS}<0.1), and air with enhanced aerosol loading such as in plumes. Potential vorticity cross sections derived from ECMWF meteorological analyses were used to further categorize the air mass types when the O_3 was sufficiently enhanced over the reference O_3 profile. In order to quantify the amount of O_3 from the stratosphere that would have been recently transported with the PV into the troposphere via STE, the relationship between O_3 and PV in the lower stratospheric air had to be determined. In situ O_3 measurements and the PV analyses from TP and PWB were used for all clearly defined stratospheric cases for PV \geq 10, and those results are plotted in Figure 2 along with the linear best fit to the data, which is constrained to pass through the origin. The slope of the best-fit line is 6.4 ppbv/PVU, and this relationship was used to estimate the amount of stratospheric air that was present in an observed air mass. This approach has been used to examine the contribution of STE to investigations of the tropospheric O_3 budget in the tropics [Fenn et al., 1999; Browell et al., 2001] and the springtime O_3 trend in the Arctic [Browell et al., in press/2002].

The criteria for categorizing the different air mass types are given in Table 1. Nine of the 11 air mass categories have been used previously in tropical O₃ studies [Fenn et al., 1999; Browell et al., 2001]. The enhanced O₃ and enhanced aerosol category, previously designated as HPLU, has been further sub-classified using the amount of PV-derived equivalent O₃ in the observed air mass. This was necessary since it was found during TP that there were many cases when air with enhanced O₃ (>20% above reference O₃ profile) and enhanced aerosol loading (ASR_{VS}>0.1) also exhibited significant levels of PV (>60% of observed O₃ attributed to stratosphere in some cases). This mixture of continental pollution with stratospheric air had to be accounted for in the air mass characterization. As a result, the previously defined category of HPLU was subcategorized into HPLU, HPLM, and HPLV based on the relative fraction of stratospheric-

derived O₃ in the air mass. This is similar to the sub-categorization that had previously been put into place for air masses with enhanced O₃, low aerosol loading, and varying amounts of stratospheric-derived O₃ (HO3, HO3M, and SINF). The specific criteria used for each air mass category are given in Table 1, and except for the new categories mentioned above, the air mass categories have been previously discussed in detail by Browell et al. [1996a; 2001] and Fenn et al. [1999].

An example of the air mass categorization applied to the data from a TP flight is shown in Plate 8. The O₃, ASR_{VS}, and PV distributions and the resulting air mass types are shown for the flight from Hong Kong to Okinawa on 17 March 2001. A large region with elevated PV, O₃, and aerosol loading can be seen centered at about 6 km and 7:00 UT, and this is categorized as HPLV due to this unique combination of parameters. This is clearly a mixture of continental pollution and stratospheric air, which results from upstream mixing of air masses. This could happen in the upper troposphere when pollutants get transported upward due to convection or frontal lifting and then mixed with stratospheric air coming into the troposphere in an intrusion [see also Avery et al., this issue]. Also, the rapid advection of air in an intrusion in the mid to lower troposphere can mix in with continental pollution, including desert dust, and carry the mixture out over the Pacific in a common air mass. The backward trajectories for the HPLV air mass support the second hypothesis for the generation of this air mass mixture. The predominant stratospheric air mass type (SINF) was identified adjacent to the HPLV air and in the upper troposphere, just below the tropopause. There are other regions in the mid troposphere that have enhanced O₃ associated with them and no appreciable aerosol enhancement and no elevated PV, and these air masses are categorized as HO3, where the O3 is thought to be of photochemical origin. The low-O₃ convective outflow/clean Pacific air (CON/CP) can be seen in the lower free

troposphere at the beginning of the flight and very extensively in the upper troposphere (>9 km) across the entire flight.

The result of applying these air mass categories to the data from TP and PWB in the western Pacific is shown in Plate 9. Two latitude regions were used to bin the observations of these air masses, and these observations were also binned by altitude in 1-km intervals. The bar charts present the percentage of the observations that were made in a latitude and altitude bin for each air mass type. Also, provided along the side of each chart is the percentage for each air mass type observed over the entire 0-18-km altitude range. For TP in the low latitude range (14-25°N), the enhanced O₃ with enhanced aerosol categories of HPLU and HPLM dominated the air mass types in the free troposphere below 5 km. In the mid-to-upper troposphere (5-12 km), the enhanced O₃ air masses were mostly dominated by HO3, which is associated with photochemical production of O₃. The low-O₃ air category CON/CP dominated the observations in the upper troposphere (>9 km) and the overall observations across the entire troposphere at 34%. The high O₃ cases represent 31% of the observations with about half of these also with enhanced aerosol loading (15%). An estimate of the observations that are attributed to the troposphere and stratosphere can be made by weighting the observations in each high O₃ category by the average fractional O₃ amount from those two sources based on the criteria given in Table 1 (assumes average of range of stratospheric O₃ contribution in each case). Using this method, and adding the individual contributions together gives the estimate that 18% of the observations are from the troposphere and 13% are from the stratosphere.

In the mid latitude range (25-46°N) during TP, the enhanced O₃ with enhanced aerosol air masses (HPLU, HPLM, and HPLV) dominated the free troposphere observations up to about 10 km, and in this altitude range, HPLM dominated in the lower part and HPLV dominated in the

upper part, as would be expected since HPLV has more stratospherically derived air than the HPLM category. In the 11-15-km region, the low-O₃ convective outflow (CON/CP) was frequently observed, while above 15 km, stratospherically influenced air (SINF) dominated the observations. For the entire altitude region, the high O₃ categories dominated all the observations at 63% with most of the observations associated with enhanced aerosols (36%). In addition, most of the high aerosol cases (31%) were either HPLM or HPLV cases with varying amounts of stratospheric air in them. Using the method described above, the estimated amount of tropospheric and stratospheric observations in the high O₃ air was found to be 28 and 35%, respectively. This is a significant increase from what was found in the lower latitudes during TP.

The air mass characterization was done with the same criteria for PWB, and the results are also presented along with TP in Plate 9. During PWB at low latitudes, the enhanced O₃ categories were confined below 9 km with comparable amounts of observations for enhanced O₃ air with (HPLU) and without (HO3) aerosols. In this same region, there were few observations of stratospherically enhanced air masses (HPLM, HPLV, HO3M, and SINF were <4.1%). Convective outflow of low-O₃ air (CON/CP) dominated all the categories in the upper troposphere (9-15 km), and the SINF category started to come in just under the tropopause. The column average of the observations for the enhanced O₃ categories for this region was 23% with 15% attributed to the troposphere and 8% to the stratosphere. Compared to PWB, TP had a relative increase in the observation of enhanced O₃ air masses by 30%, and the relative increase in the tropospheric and stratospheric components of these observations were 20% and 62%, respectively.

In the mid latitudes for PWB, nearly all of the observations of enhanced O₃ were in categories that were associated with enhanced aerosols and some component of stratospheric air

(HPLM and HPLV), and they were mostly found in the free troposphere below 10 km. In this same altitude range, there was a significant fraction of the air masses that did not contain enhanced O₃ relative to the reference profile but did have enhanced aerosols in it (BPLU). This would be more associated with continental dust or pollution, but without significantly enhanced O₃. In the upper troposphere, the low-O₃ convective outflow dominated the observations up to about 14 km when the SINF category became the most prevalent. Over the entire troposphere in this region, the amount of observations of enhanced O₃ air masses was 41% with 15% attributed to the troposphere and 26% attributed to the stratosphere. Compared to PWB, TP had a relative increase of 54% in observed enhanced O₃ air masses, and for these air masses, the relative increase for the tropospheric component was 87% and for the stratospheric component was 35%. It was previously discussed that the average PV distributions between TP and PWB showed that there was more STE occurring during TP than in PWB, and this is further confirmed by comparing the air mass characterization results between the two field experiments. While the STE increased between TP and PWB, it is also clear from the above analysis that the amount of enhanced O₃ air that is attributed to tropospheric origin also increased significantly between PWB and TP. This increase may be attributed to the increased photochemical activity that was present during TP compared to PWB [Miyazaki et al., 2002; Davis et al., this issue].

3.3.2 Aerosol air mass characterization. The aerosol characteristics of all the air mass categories were determined for the airborne lidar measurements of aerosol backscattering at multiple lidar wavelengths (ASR $_{IR}$ and ASR $_{VS}$), their derived WVD, and DPL from the nadir VS lidar measurements. The aerosol characteristics were derived from all flights west of 150°E. The WVD was calculated from coincident ASR $_{IR}$ and ASR $_{VS}$ measurements when ASR $_{IR}$ >0.2 and ASR $_{VS}$ >0.1, but when the coincident sample size was small (<100), the WVD was calculated

directly from the median values of ASR_{IR} and ASR_{VS} . Aerosol DPL values were also only calculated for cases where ASR_{VS} >0.1. The aerosol characteristics for TP and PWB are given in Table 2. TP results are presented for all the aerosols that were observed in each category and for only those aerosols that had high DPL (>5%). The results from PWB include ASR_{IR} , ASR_{VS} , and WVD, but no DPL measurements were made during PWB.

The lowest aerosol scattering values for TP were associated with the HO3, HO3M, SINF, REF, and CON/CP categories with ASR_{IR}<0.24 and ASR_{VS}<0.07 (all values given below are median values). CON/CP had the lowest values of ASR_{IR} and ASR_{VS} of 0.1 and 0.04, respectively, which is consistent with the air in the upper troposphere having the lowest aerosol loading in association with cirrus cloud cleansing. The large WVD (1.9-2.5) associated with aerosols in these low aerosol scattering air masses indicates that they are predominantly submicron in size. Air mass categories that have enhanced aerosol loading were found to have different aerosol characteristics depending on the amount of O₃ in the air mass. In the enhanced O₃ categories (HPLU, HPLM, and HPLV), the aerosols had significantly higher scattering ratios and DPL values than the air masses with background (BPLU) and low-O₃ (LPLU) levels. The WVD is similar between the different enhanced aerosol categories so there is some commonality in the aerosol size distributions in these air masses even though there may be differences in the number densities of the aerosols. NS had the largest aerosol scattering ratios, lowest WVD, and highest DPL of all the categories. This is to be expected because of the relative humidity growth of aerosols in the lower troposphere and in particular in the MBL. This growth produces large particles which are efficient scatters with low WVD, but there are also depolarizing dust and sea salt aerosols in the lowest 2 km which contribute to the enhanced DPL in this category.

Limiting the examination of TP aerosols to those in each category that had enhanced DPL (>5%) results in the aerosol characteristics shown in Table 2. The NS and plume categories (BPLU, HPLU, HPLM, and HPLV) were the only ones that had enhanced DPL aerosols. Compared to all the aerosols in the same air mass type, the aerosols with enhanced DPL had significantly larger aerosol scattering ratios (>2x for ASR_{IR} and >1.5x for ASR_{VS}), significantly lower WVD (generally less than 1), and significantly higher DPL (greater than \sim 10%). This indicates that the depolarizing aerosols are much larger then the average aerosol composition in the air mass types, which further reflects that the aerosol composition is made up of a wide range of aerosol characteristics.

The aerosol characteristics for PWB are presented in Table 2 for comparison with TP results. The general scattering characteristics for the low aerosol loading air mass types (HO3, HO3M, SINF, CON/CP, REF) are comparable to the TP results. Aerosols in the HPLU air mass type had scattering ratios more than a factor of 4 larger than observed in TP and the WVD is a factor of 2 lower. This indicates much larger aerosols were found in this category during PWB. The opposite was found in the HPLM and HPLV categories with lower scattering ratios and higher WVD. This is consistent with there being less STE and less coupling with continental pollution, including desert dust, during PWB.

3.3.3 Chemical air mass characterization. A detailed chemical composition was determined for each air mass type by averaging in situ chemical measurements across air masses that had been remotely categorized using the methodology described above. In this process, the observed air mass type had to be sufficiently large so that there was high confidence that the in situ measurements were being made in the specific air mass type. The in situ measurements were averaged over each air mass sample for each air mass type. The range of in situ

measurements made on the DC-8 during TP and PWB are described by Jacob et al. [this issue] and Hoell et al. [1997], respectively. This approach for defining the chemical characteristics of air mass types has been used extensively in other tropospheric chemistry investigations [Browell et al., 1996a; 1996b; 2001 and Fenn et al., 1999].

Table 3 presents the results from this analysis for TP air mass types. It should be noted that there were no cases where we confidently sampled in situ the enhanced O₃ mixture (HO3M) category so it is omitted from the table, and the low-O₃ plume (LPLU) category only had one case for its characterization. All of the other air mass types were represented by at least three independent in situ measurement periods or "samples". In general, the median value for the sample set for each air mass type is given in the table to avoid the biasing of the averages by possible extreme values that might infrequently be encountered; however, when there were less than five samples, the average value is given. The latitude range of the samples is provided for each air mass type, and it can be seen that the samples for the low and background O₃ categories (REF, CON/CP, LPLU, BPLU) were obtained in the low latitude range (<25°N) while all the other categories were mostly in the mid-latitude range (>25°N). The exception to this was the HO3 category, which spanned the 20-29°N range. The altitude range of the samples also generally reflected where the air mass types were located (within the 12-km range of the DC-8), as seen in Plate 9. Of all the air mass types, the NS air exhibited the highest levels of pollution related gases and aerosols, as would be expected in the low altitude outflow from Asia, and the hydrocarbon ratios indicated that this was the air mass containing the most recent pollution emissions. By contrast, the CON/CP air had very low levels of O₃ and CO and the lowest levels of hydrocarbons of any of the air mass types, and the hydrocarbon ratios indicate that this air had been over the marine environment for the longest time, which is consistent with it being

considered as convective outflow of clean Pacific air. The air mass types that require special attention are associated with the enhanced O₃ categories. All of the HPL categories have similar O₃, CO, hydrocarbon, PAN, and SO₂ levels, which are significantly elevated from the background O₃ categories (REF and BPLU). In addition, C₂Cl₄ is significantly enhanced in these air masses which also indicates a strong urban pollution influence. The aerosol related compounds of nitrate and sulfate are all high in the HPL categories. The hydrocarbon ratios reflect some air mass processing, and the higher O₃/CO ratio indicates recent photochemical O₃ production. There are clearly differences in the sources contributing to the HPL categories, and it is not a simple chemical transition from HPLU to HPLM and HPLV with a mixing in of stratospheric air defined as SINF. The atmospheric conditions that lead to these different subcategories probably favor different source regions. There are indications from the values of ⁷Be, HNO₃, and NO₂ that HPLV has more stratospheric air mixed in with it than for HPLM or HPLU, but HPLV also has high levels of C₂Cl₄, nitrate, and sulfate, which indicates a high level of tropospheric pollution in these air masses. This is clearly a case of a difference in the source region for the different HPL categories. The enhanced O₃ with low aerosol loading categories of HO3 and SINF are quite different from the HPL air mass types. The HO3 category has significantly less CO, hydrocarbons, PAN, C₂Cl₄, CH₃I, CHBr₃, nitrate, and sulfate, and the hydrocarbon ratio indicates an air mass which has undergone much more processing. There were significant increases in OH and NO, and the O₃/CO ratio was the highest of the nonstratospheric air mass types. This indicates active photochemistry and long-range transport of these air masses. The elevated amount of acetonitrile and low level of H₂O₂ could be associated with the convective transport of biomass burning gases into the mid troposphere as was discussed for the data shown in Plate 1. The SINF category had a composition that was more

polluted than found in previous results [Browell et al., 1996a, 2001; Fenn et al., 1999]. While O₃, ⁷Be, and HNO₃ were generally higher, H₂O, CO, CO₂, CH₄, non-methane hydrocarbons, H₂O₂, sulfate, and nitrate were generally lower, but not as low as expected at this level in the lower stratosphere. The presence of enhanced pollution related gases and aerosols in the SINF category reflects the mixing of tropospheric pollution into the lower stratosphere [Avery et al., this issue; Pierce et al., this issue]. This can account for some of the remaining pollutants in the HPLV category, which is composed of a large fraction of air from the lower stratosphere. The background and low-O₃ categories (REF, BPLU, and LPLU) all had intermediate composition from the extremes discussed above, and while the aerosol loading was different between them, they otherwise had similar chemical compositions.

The composition of the air mass types observed during PWB is presented in Table 4. A comparison of the compositions for PWB and TP show some very significant differences. Except for the NS and SINF categories, PWB had higher levels of nearly all the pollution related gases and aerosols compared to TP, including CO, all hydrocarbons, PAN, SO₂, HNO₃, H₂O₂, C₂Cl₄, nitrate, and sulfate, and higher levels of the hydrocarbon ratios. The only values that were lower in all air mass types in PWB compared to TP were CO₂ and CH₄, which is not surprising since their concentrations are increasing worldwide. It was also found that O₃ and the O₃/CO ratios were lower in all the enhanced O₃ air mass types in PWB, with the exception of SINF, which was measured farther into the lower stratosphere in PWB. The above differences generally reflect less photochemical activity during PWB compared to TP, which is supported by the photochemical analysis of the two campaigns by Davis et al. [this issue], but some of the differences can also be associated with increased STE in TP, which was discussed above and is addressed by Pierce et al. [this issue]. Also, during PWB the NS air was slightly less polluted

than for TP with lower CO, PAN, SO₂, HNO₃, nitrate, and sulfate. Except for the trends mentioned above, all the other air mass types had characteristics similar to those observed in TP.

3.4 Flux Estimates

There is considerable interest in the transport of pollutants from Asia to the Pacific Ocean and North America, and a number of papers have discussed the transport of pollutants to Japan and the western Pacific Ocean [Gregory et al., 1997; Talbot et al., 1997; Xiao et al., 1997; Pochanart et al., 1999; Phadnis et al. 2000; Bey et al., 2001]. As emissions increase in Asia, it is expected that pollution levels in North America will also increase due to long-range transport [Jacob et al., 1999; Jaffe et al., 1999; Yienger et al., 2000; Kotchenruther et al., 2001; Wilkening, 2001]. One of the main objectives of TP was to determine the fluxes of O₃ and other gases that were advecting off of the Asian continent over the western Pacific. The following sections discuss the methodology and results for estimating the eastward flux of O₃, CO, CO₂, and CH₄ during TP.

3.4.1 Ozone flux estimates. The eastward component of the O₃ flux for each TP flight was estimated by combining the tropospheric O₃ cross section determined from the combined lidar and in situ data along the flight track with the corresponding cross section of the westerly wind component from the ECMWF analysis. In this analysis, the flux is defined as the mass of a gas per unit time transported eastward through a defined area. The eastward O₃ flux distribution is calculated for each O₃ data interval (30 m in vertical and 2 s in horizontal) in the atmospheric cross section along the flight track. The flux per unit data interval is sensitive to the direction of the flight track as the projected north-south area of the data interval has to be used in the eastward flux calculation. Plate 10 presents an example of the cross sections used in the flux calculation and the resulting O₃ flux distribution for the flight from Guam to Hong Kong on 3-4

March 2001. The O₃ cross section along the flight track with isopleth overlays of the ECMWF westerly wind components is shown along with the calculated distribution of the derived eastward O₃ flux (kg/day) in each data interval. Note that the abrupt horizontal changes in the calculated O₃ flux are due to changes in flight direction, which changes the effective area of the data interval used to calculate the O₃ flux. The calculated O₃ flux is influenced greatly by the magnitude of the eastward wind component as can be seen in the figure with the resulting flux distribution being very similar to the strong westerly wind distribution associated with the subtropical jet. The change in wind direction to easterly on the east side of the low-level front at about 3:00 UT (see discussion above for Plate 1) produces a negative eastward flux of low-O₃ air associated with clean marine air in the lower troposphere. There is also a change in wind direction at low latitudes below 2 km after 6:00 UT, and this leads to a negative eastward flux in a much more polluted environment over the South China Sea.

The average eastward O_3 flux in 1 km altitude x 1 deg latitude bins from each flight in the western Pacific (west of 150°E) were averaged together on an equally weighted basis to arrive at the average eastward O_3 flux distribution for TP shown in Plate 11. Also, shown in Plate 11 is the average westerly wind distribution, which was obtained by binning and averaging the eastward winds for the same flights as used in the flux calculation. The average tropospheric O_3 flux distribution was highly correlated with the average wind distribution with the only major deviation being in the upper troposphere (>10 km) south of 32°N where the higher wind speeds are offset by the lower O_3 in that region. The maximum O_3 flux was near the core of the jet with values of about $40x10^6$ kg/day/deg/km. The average easterly wind in the lower troposphere in the tropics produced the only persistent large-scale region with negative O_3 flux with a maximum

of about $-5x10^6$ kg/day/deg/km. There was also a small region of negative flux in the upper troposphere near 45° N.

The eastward O₃ flux distributions were also calculated for each air mass category observed during TP. The correlation between the O₃ flux and each air mass category was done for each flight, and these results were averaged to arrive at the average latitudinal distribution for the eastward O₃ flux for each air mass category. These results are shown in Plate 12 for nearly all of the air mass categories (NS and LPLU are not shown). This figure graphically shows where the various air mass types were observed and their relative contribution to the average O₃ flux distribution. The enhanced O₃ and enhanced aerosol categories (HPL) are shown at the top of the figure. The altitude of the maximum flux for the HPLU and HPLM categories was in the 4-6-km region over a broad latitudinal range north of 20°N. The influence of the higher wind speeds in conjunction with the stratospheric intrusions contributed to the higher fluxes ($>25 \times 10^6$ kg/day/deg/km) at higher altitudes closer to the jet with the center of the HPLV flux near 8 km and 35°N. The air masses with enhanced O₃ and low aerosol loading (HO3, HO3M, and SINF) showed a wide latitudinal variation in where they contribute to the O₃ flux. The HO3 flux was centered at about 8 km and 25°N with a maximum flux of about 8x10⁶ kg/day/deg/km, and the SINF flux was mostly in the upper troposphere and near the core of the jet with a maximum flux on the order of 25×10^6 kg/day/deg/km near 11 km and 33° N. The CON/CP flux is concentrated in the upper troposphere (10-15 km) south of 31°N where the convective outflow of low-O₃ air was most prevalent. The BPLU category was generally lower in the troposphere (3-10 km) than the other air mass types and covered a broad latitudinal range from about 22-42°N. The REF flux was concentrated in the mid to upper troposphere (5-16 km) between 18-33°N with a maximum flux of about $10x10^6$ kg/day/deg/km.

The column tropospheric O₃ flux distributions for each air mass type and for all of them together are shown in Plate 13 along with the integrated tropospheric O₃ flux between 14-46°N. The latitude of the maximum O₃ flux for each air mass type directly reflects the dominant processes that contribute to creating it. For example, the HO3 category is centered at about 26°N with a peak flux of ~50 Gg/day/deg, and this has been predominantly associated with a biomass burning source in SE Asia [Heald et al., this issue]. The HPLV category exhibited the greatest impact of all the air mass categories with the highest O₃ flux of 142 Gg/day/deg and the broadest flux distribution with an O₃ flux >50 Gg/day/deg over the entire region from 28-42°N. The HPLM category was similar in distribution to HPLV, but it had about half the flux levels. As was mentioned previously, the O₃ flux for SINF was narrowly focused on the 28-35°N region with a maximum O₃ flux of 117 Gg/day/deg. The total O₃ flux distribution was found to peak at 32°N at an O₃ flux of 342 Gg/day/deg. The general decrease in the total flux with increasing latitude from the peak was associated with the decreasing tropopause level and the decreasing wind speed north of the jet.

The integrated O₃ flux is shown in the table in Plate 13. The total average O₃ flux between 14-46°N was found to be 5.15 Tg/day. HPLV had the highest O₃ flux with 1.51 Tg/day, and HPLM was second with 0.89 Tg/day. The two categories together represent 46% of the total O₃ flux. All of the high O₃ categories (HPLU, HPLM, HPLV, HO3, HO3M, and SINF) together represent 78% of the O₃ flux, and of those categories, it is estimated that about 58% of the flux was associated with stratospheric air.

3.4.2 O₃, CO, CO₂, and CH₄ flux estimates based on average air mass compositions.

The total flux of O₃, CO, CO₂, and CH₄ were estimated for each air mass type by using the average air mass compositions identified in Table 3. These average gas concentrations for each

air mass type were applied to all of the regions where that air mass type was observed on each flight (an example of the air mass type distribution was shown in Plate 8). The flux was calculated by applying the westerly wind component distribution to the different air mass types and their associated average gas concentrations for each flight and then combining these flux distributions in the same way that was done for deriving the average O₃ flux distribution discussed above. The flux in each air mass category was integrated in altitude across the troposphere and from 14-46°N to produce the resulting O₃, CO, CO₂, and CH₄ flux results for the individual air mass categories shown in Table 5. These are total eastward flux estimates for these gases. The total flux of O₃ calculated with this method agrees to within ~11% of the total O₃ flux given in Plate 13 (without including HO3M). Even when the O₃ flux is compared in each of the air mass categories, the values are very similar with the only exception being in the SINF category where this second method estimates a significantly higher O₃ flux. In general, the O₃ flux comparison between the two methods provides confidence in using it for determining the flux of other gases.

This technique was applied to determining the total flux for CO, CO₂, and CH₄, and their results are also shown in Table 5. These total flux estimates are given by air mass type, and for these gases the largest fluxes were found in the HPLV and HPLM categories, which are generally associated with enhanced aerosol loadings and higher wind speeds (see Plate 12 for correlation to O₃ flux distributions). The estimated total flux of CO was 5.2 Tg/day (2.2 Tg-C/day), and again HPLV has the highest component of flux. The combination of HPLM and HPLV accounts for nearly half (48%) of the CO flux. Unlike O₃, where SINF had the third highest O₃ flux, the third highest CO flux was associated with the REF air mass type. The combination of all the air mass types with enhanced aerosols, including NS air, accounted for

67% of the CO flux. This indicates a strong influence from recent continental pollution emissions.

The total flux estimates for CO₂ and CH₄ were found to be 27x10³ Tg/day (7.4x10³ Tg-C/day) and 47 Tg/day (35 Tg-C/day), respectively. The same major air mass types contributed in a similar way to the CO₂ and CH₄ fluxes as they did to the CO flux; however, due to the high background levels of CO₂ and CH₄, there were significant contributions to their total flux associated with non-pollution categories such as CON/CP and REF. It was found that the fluxes of all these gases were more influenced by the large variations in the eastward wind component between air mass types than the smaller variations in gas concentrations between them.

The amount of O_3 , CO_2 , and CH_4 flux contributed by Asia was estimated by calculating the background eastward flux of each gas and subtracting it from the total eastward flux of the gas. The background flux was determined by combining a uniform distribution of the background gas along the flight track with the wind analysis to come up with a background flux distribution for each flight. These distributions were averaged together in the same manner as for determining the O_3 flux to produce a background flux estimate for the gas which was then subtracted from the total flux to give an estimate of the Asian flux component. Vay et al. [this issue] used the correlation between CO_2 and the C_2H_2/CO ratio in the near-Asia Tropical region to determine that the background level of CO_2 was approximately 372 ppmv. This is very close to the average CO_2 level of 371.3 ppmv determined for the TP REF category (Table 3). The correlation between the in situ CO_2 and CO data from the DC-8 and P-3 in the near-Asia Tropical region was found to follow a quadratic relationship with $r^2 = 0.85$, and this relationship was used to estimate a background CO level of 104.0 ppbv when the background CO_2 was 372 ppmv. This is close to the average CO level of 99.3 ppbv found for the REF air mass category.

A similar correlation was done between the CO_2 and CH_4 data, and a linear fit was made to the data ($r^2 = 0.60$) to arrive at an estimated background CH_4 level of 1767.7 ppbv at a CO_2 level of 372 ppmv. The average CH_4 value of 1755.0 ppbv in the REF category is somewhat lower than this estimate.

The background fluxes of O₃ and CO were calculated from the average values associated with the REF category, and background fluxes of CO, CO₂, and CH₄ were calculated from the background values estimated from their correlation with CO₂ at a background value of 372 ppmv. These background fluxes were then subtracted from the total flux shown in Table 4 to produce an estimated flux that could be attributed to Asia (Table 5). Based on using the REF air mass composition as representative of the background conditions, the resulting O₃ flux associated with Asia was 2.3 Tg/day, which represents 41% of the total O₃ flux. Also, the Asian CO flux was estimated at 0.56 Tg/day (0.24 Tg-C/day), which is only 11% of the total CO flux. Based on the CO₂-derived CO background value of 104.0 ppbv, the estimated Asian CO flux was 0.34 Tg/day (0.14 Tg-C/day), which is 39% lower than the estimate using the REF background.

Due to the high background levels for CO₂ and CH₄, the calculated contribution from Asia is highly dependent on the background value chosen for the analysis, and therefore the CO₂-based background values for CO and CH₄ were assumed to be the best available estimate of the background values. Based on a CO₂ background of 372 ppmv, the Asian CO₂ flux was estimated to be 4.9 Tg-C/day, which is significantly less than the Asian CO₂ flux of 13.9 Tg-C/day estimated by Vay et al, [this issue]. Some of this difference might be attributed to the latitude and altitude dependent CO₂ background that Vay et al. chose to use and the more limited in situ sampling that was used in their analysis. Using the CO₂-based background value for CH₄, the

Asian CH₄ flux was estimated to be only 0.057 Tg-C/day. The CO₂ and CH₄ Asian flux estimates are very sensitive to the background or up-wind gas concentrations. The analyses presented in this section has provided new estimates for the eastward flux of O₃, CO, CO₂, and CH₄ over the western Pacific and an estimate of the contribution of Asia to this flux.

4. Summary and Conclusions

Extensive large-scale distributions of O₃ and aerosol characteristics were obtained from near the surface to above the tropopause on all DC-8 flights during TP. Atmospheric cross sections of O₃, ASR_{IR}, ASR_{VS}, and DPL were derived from a combination of remote and in situ measurements along the aircraft flight track. In situ measurements of O₃ and other trace gases and aerosols were made onboard the DC-8, and the real-time remote O₃ and aerosol lidar measurements and displays were frequently used to guide the in situ sampling strategy. Backward trajectories and meteorological analyses of PV and winds were used extensively in the interpretation of air masses observed during each flight, and several examples were presented here that described the nature of the observed air masses and their possible sources. Large-scale observations of Asian outflow of pollution were found in the low to mid troposphere with enhanced O₃ and aerosols; air from biomass burning regions in SE Asia were seen in the midtroposphere in the tropics with enhanced O₃ and low aerosol loading; and stratospherically influenced air with and without pollution were frequently found with elevated PV levels and elevated O₃. Several case studies were presented for different flights during TP, and the general results of all the observations are summarized below.

Average latitudinal and longitudinal O₃ and ASR_{VS} distributions were determined for TP.

Total (stratospheric and tropospheric) and tropospheric cross sections were derived by averaging

data from all the TP flights. The average large-scale features of the lower atmosphere over the western Pacific and in different latitude ranges across the Pacific provided insight into the spatial variability in O₃ and aerosol characteristics and the relative influence of various transport and photochemical processes on establishing the observed distributions. The median O₃ and ASR_{VS} in the 0-8-km and 25-46°N region were found to be 58.1 ppbv and 0.74, respectively. The average latitudinal PV distribution was also determined for TP, and the similarities with some of the observed O₃ features were discussed.

The latitudinal distribution of O₃, ASR_{VS}, and PV from PWB was presented and compared with the results from TP. The large-scale differences in O₃ and aerosols between TP and PWB were examined, and it was determined in the 0-8-km, 25-46°N region that O₃ and ASR_{VS} increased by a median value of 9.4 ppbv (19%) and 0.28 (78%), respectively. The change in the average PV distribution was also examined for the two field experiments, and a significant difference was found which would indicate an increase in STE for TP compared to PWB. This is consistent with the expected STE increase into the spring, and the effect was also seen in the increased frequency of observations of stratospherically influenced air masses. There was also an increase in O₃ and aerosols, without a correlated increase in PV, that are attributed to photochemistry and an increase in pollution outflow, respectively. The average longitudinal distributions of O₃ and aerosols for TP were discussed with respect to different transport and photochemical processes, and it was noted how the O₃ and aerosol levels had increased between PWB and TP for the same reasons as given above for the western Pacific.

An air mass characterization was conducted for all remote O₃ and ASR_{VS} observations made during TP and PWB. Eleven air mass types were defined based on the levels of O₃, ASR_{VS}, and PV-derived stratospheric O₃ in the observed air masses. The frequency of observation of each

air mass type with altitude was determined in low (14-25°N) and mid (25-46°N) latitude regions in the western Pacific. In the low-latitude region, the convective outflow/clean Pacific (CON/CP) air mass type was the most frequently observed; however, the enhanced O₃ air mass types were more frequently observed in TP (31%) than during PWB (23%). The largest change was in the HPLM and SINF categories with relative increases of 195 and 73%, respectively. In the-mid latitude region, the HPLM and HPLV categories dominated the lower free troposphere in TP (>70%) and to a lesser degree in PWB (<35%). The relative increase in the enhanced O₃ air masses during TP compared to PWB was 54%, and this was attributed to a relative increase for the tropospheric component of 87% and stratospheric component of 35%. This indicates that there was a significant increase in both photochemistry and STE that contributed to the O₃ budget and the differences between the two field experiments.

Average aerosol optical characteristics (ASR_{IR}, ASR_{VS}, WVD, and DPL) were determined for the various observed air mass types, and while no particular surprises were found, this was the first quantitative representation of the optical properties of these air masses. The enhanced O₃ and aerosol categories had significant ASR_{IR} (1.2-1.9) with moderate WVD (1.2-1.7) and enhanced DPL (2.5-6.2%). The amount of aerosols with enhanced DPL in these air masses was surprising, but backward trajectories indicated that some of these air masses had possibly encountered desert dust regions a few days earlier. Examining only the aerosols with higher DPL (>5%) in each category, indicated that those aerosols had significantly higher ASR_{IR} (2.9-4.7)), lower WVD (0.7-1.2), and higher DPL (>10%) than the average for all the aerosols in the air mass type. This further supports the presence of dust aerosols in the samples. Comparisons of the TP and PWB aerosol properties support the conclusion that there was more STE and more coupling with continental pollution, including desert dust, during TP.

The chemical composition for the different air mass types was determined for TP and PWB, and it was found that PWB had higher levels of nearly all pollution related gases and aerosols compared to TP. Also, the hydrocarbon ratios indicate that the PWB air masses were less processed than the same air masses observed in TP. These results can be explained by the lower level of photochemical activity that was present during PWB, which was 3 weeks earlier than TP. This conclusion is also supported by the photochemical model analysis by Davis et al. [this issue]. During TP there was evidence for significant mixing of stratospheric and tropospheric air as indicated by the composition of the HPLM and HPLV air. Even the SINF category showed evidence of tropospheric air mixed into the lower stratosphere during the increasingly active STE exchange that occurs during the springtime [see also, Avery et al., this issue].

Eastward O₃ flux distributions for TP were estimated for each air mass type from a combination of the air mass characterization results, measured O₃ distributions, and the wind analysis for each flight. The average latitudinal distribution of the O₃ flux for each air mass type reflected the predominant spatial location (latitude and altitude) of the various air masses, and the magnitude of the O₃ flux was dominated by the wind at that location. As a result, the total O₃ flux distribution was maximum near the subtropical jet, and air masses types that were most often observed near the jet were found to have the highest O₃ flux. The HPLV category had the largest O₃ flux near 8 km and 35°N. The column integrated tropospheric O₃ flux showed a peak of 340 Gg/day/deg at 32°N. Between 14-46°N, the total O₃ flux was found to be 5.2 Tg/day with HPLV and HPLM representing 47% of the flux. All of the enhanced O₃ categories together represent 78% of the flux, and it is estimated that 58% of the flux was associated with the stratosphere.

Total flux estimates were also made for O₃, CO, CO₂, and CH₄ based on the average gas composition for the different air mass types. The O₃ flux calculated with this approach compared well with the full O₃ flux analysis discussed above. The relative magnitude of the fluxes of these gases in the various air mass types was similar to that for O₃ as a result of the flux being strongly influenced by the wind distribution. Thus, the HPLV category had the highest flux for all the gases. CO had an estimated total flux of 5.2 Tg/day (2.2 Tg-C/day), and HPLV and HPLM accounted for 48% of the flux. CO₂ and CH₄ were estimated to have total fluxes of 27x10³ Tg/day (7.4x10³ Tg-C/day) and 47 Tg/day (35 Tg-C/day), respectively. In addition, the background fluxes for O₃, CO, CO₂, and CH₄ were estimated and subtracted from the total flux to provide an estimate as to the portion of the total flux that could be attributed to Asia. Based on a CO₂ background value of 372 ppmv, the Asian flux for CO was estimated at 0.14 Tg-C/day. The Asian CO₂ and CH₄ fluxes were also estimated at 4.9 and 0.057 Tg-C/day, respectively; however, it is recognized that these estimates are highly sensitive to the assumed background values for CO₂ and CH₄. These are the first flux estimates for O₃, CO, CO₂, and CH₄ based on remote and in situ gas measurements and wind analysis. Contributions to the flux from the various air mass types allows for an examination of the relative influence of different processes and atmospheric components on the total gas flux.

5. Acknowledgments

The authors thank Anthony Notari, Jerry A. Williams, William J. McCabe, and George V. Insley, Jr. at the NASA Langley Research Center for their assistance in all aspects related to installing, operating, and maintaining the airborne UV DIAL system on the DC-8 during the TP field experiment. We also very much appreciate the cooperation of the NASA Dryden Flight

Research Center's DC-8 flight crew in conducting this field experiment. The funding for this investigation came from NASA's Tropospheric Chemistry Program.

6. References

- Avery, M. A., D. J. Westberg, H. E. Fuelberg, R. E. Newell, B. E. Anderson, S. A. Vay, G. W. Sachse, and D. R. Blake, Chemical transport across the ITCZ in the Central Pacific during an ENSO cold phase event, *J. Geophys. Res.*, this issue.
- Bey, I., D. J. Jacob, J. A. Logan, and R. M. Yantosca, Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets, *J. Geophys. Res.*, *106*, 23,097-23,113, 2001.
- Browell, E. V., Remote sensing of tropospheric gases and aerosols with an airborne DIAL system, in *Optical Laser Remote Sensing*, edited by D. K. Killinger and A. Mooradian, pp. 138-147, Springer-Verlag, New York, 1983.
- Browell, E. V., A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, Jr., and W. M. Hall, NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles, *Appl. Opt.*, *22*, 522-534, 1983.
- Browell, E. V., S. Ismail, and S. T. Shipley, Ultraviolet DIAL measurements of O₃ profiles in regions of spatially inhomogeneous aerosols, *Appl. Opt.*, *24*, 2827-2836, 1985.
- Browell, E. V., et al., Large-scale air mass characteristics observed over the Western Pacific during summertime, *J. Geophys. Res.*, *101*, 1691-1712, 1996a.
- Browell, E. V., et al., Ozone and aerosol distributions and air mass characteristics over the South Atlantic Basin during the burning season, *J. Geophys. Res.*, 101, 24,043-24,068, 1996b.
- Browell, E. V., S. Ismail, and W. B. Grant, Differential Absorption Lidar (DIAL) measurements from air and space, *Appl. Phys.-B*, *67*, 399-410, 1998.

- Browell, E. V., et al., Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM Tropics B Field Experiment, *J. Geophys. Res.*, *106*, 32,481-32,501, 2001.
- Browell, E. V., et al., Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America, *J. Geophys. Res.*, in press/2002.
- Davis, D. D., et al., Trends in western North-Pacific ozone photochemistry as defined by observations from NASA's PEM-West B (1994) and TRACE-P (2001) field studies, *J. Geophys. Res.*, this issue.
- Fenn, M. A., E. V. Browell, and C. F. Butler, Airborne lidar measurements of ozone and aerosols during PEM-West A and PEM-West B, in *Advances in Atmospheric Remote Sensing with Lidar*, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds., pp. 355-358, Springer Verlag, New York, 1997.
- Fenn, M. A., et al., Ozone and aerosol distributions and air mass characteristics over the south Pacific during the burning season, *J. Geophys. Res.*, 104, 16,197-16,212, 1999.
- Fuelberg, H. E., C. M. Kiley, J. R. Hannan, D. J. Westberg, M. A. Avery, and R. E. Newell, Atmospheric transport during the TRAnsport and Chemical Evolution over the Pacific (TRACE-P) experiment, *J. Geophys. Res.*, this issue.
- Gregory, G. L., J. T. Merrill, M. C. Shipham, D. R. Blake, G. W. Sachse, and H. B. Singh, Chemical characteristics of tropospheric air over the Pacific Ocean as measured during PEM-West B: Relationship to Asian outflow and trajectory history, *J. Geophys. Res.*, 102, 28,275-28,285, 1997.

- Heald, C. L., D. J. Jacob, P. I. Palmer, M. J. Evans, G. W. Sachse, H. B. Singh, and D. R. Blake, Biomass burning emission inventory with daily resolution: application to aircraft observations of Asian outflow, *J. Geophys. Res.*, this issue.
- Hoell, J. M., D. Davis, S. C. Liu, R. Newell, M. Shipham, H. Akimoto, R. J. McNeal, R. J. Bendura, and J. W. Drewry, Pacific exploratory Mission-West A (PEM-West A): September October 1991, *J. Geophys. Res.*, *101*, 1641-1653, 1996.
- Hoell, J. M., D. D. Davis, S. C. Liu, R. E. Newell, H. Akimoto, R. J. McNeal, and R. J. Bendura, The Pacific Exploratory Mission West phase B: February-March, 1994, *J. Geophys. Res.*, 102, 28,223-28,239, 1997.
- Jacob, D. J., J. A. Logan, and P. P. Murti, Effect of rising Asian emissions on surface ozone in the United States, *Geophys. Res. Lett.*, *26*, 2175-2178, 1999.
- Jacob, D. J., J. H. Crawford, M. M. Kleb, V. E. Conners, R. J. Bendura, J. L. Raper, Jr., et al., The TRAnsport and Chemical Evolution over the Pacific (TRACE-P) mission: Design, execution, and overview of results, *J. Geophys. Res.*, this issue.
- Jaffe, D., Transport of Asian air pollution to North America, *Geophys. Res. Lett.*, 26, 711-714, 1999.
- Koike, M., et al,. Export of anthropogenic reactive nitrogen and sulfur compounds from the East Asia Region in spring, *J. Geophys. Res.*, this issue.
- Kotchenruther, R. A., D. A. Jaffe, and L. Jaegle, Ozone photochemistry and the role of peroxyacetyl nitrate in the springtime northeastern Pacific troposphere: Results from the Photochemical Ozone Budget of the Eastern North Pacific Atmosphere (PHOBEA) campaign. *J. Geophys. Res.*, 106, 28,731-28,742, 2001.

- Lefer, B., R. Shetter, S. Hall, J. H. Crawford, and J. R. Olson, Impact of clouds and aerosols on photolysis frequencies during TRACE-P, Part I: Analysis using radiative transfer and photochemical box models, *J. Geophys. Res.*, this issue.
- Liu, H. Y., D. J. Jacob, L. Y. Chan, S. J. Oltmans, I. Bey, R. M. Yantosca, J. M. Harris, B. N. Duncan, and R. V. Martin, Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations, *J. Geophys. Res.*, 107 (D21), art. no. 4573, Nov. 2002.
- Liu, H. Y., D. J. Jacob, I. Bey, R. M. Yantosca, B. N. Duncan, and G. W. Sachse, Transport pathways for Asian combustion outflow over the Pacific: Interannual and seasonal variations, *J. Geophys. Res.*, this issue.
- Mauzerall, D. L., D. Narita, H. Akimoto, L. Horowitz, S. Walters, D. A. Hauglustaine, and G.
 Brasseur, Seasonal characteristics of tropospheric ozone production and mixing ratios over
 East Asia: A global three-dimensional chemical transport model analysis, *J. Geophys. Res.*,
 105, 17895-17910, 2000.
- Miyazaki, Y., K. Kita, Y. Kondo, M. Koike, M. Ko, W. Hu, S. Kawakami, D. R. Blake, and T. Ogawa, Springtime photochemical ozone production observed in the upper troposphere over east Asia, *J. Geophys. Res.*, *108*, No. D3, 8389, doi:10.1029/2001JD000811, 2002.
- Murayama, T,, et al., Ground-based network observation of Asian dust events of April 1998 in east Asia, *J. Geophys. Res.*, *106*, 18,345-18,359, 2001.
- Perry, K. D., T. A. Cahill, R. C. Schnell, and J. M. Harris, Long-range transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observatory, Hawaii, *J. Geophys. Res.*, *104*, 18,521-18,533, 1999.

- Phadnis, M. J., and G. R. Carmichael, Transport and distribution of primary and secondary nonmethane volatile organic compounds in east Asia under continental outflow conditions, *J. Geophys. Res.*, *105*, 22,311-22,336, 2000.
- Pickering, K. E., et al., Trace gas transport and scavenging in PEM-Tropics B South Pacific convergence zone convection, *J. Geophys. Res.*, *106*, 32,591-32,607, 2001.
- Pierce R. B., et al., Regional Air Quality Modeling System (RAQMS) predictions of the tropospheric ozone budget over southeast Asia, *J. Geophys. Res.*, this issue.
- Pochanart, P., J. Hirokawa, Y. Kajii, H. Akimoto, and M. Nakao, Influence of regional-scale anthropogenic activity in northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at Oki, Japan, *J. Geophys. Res.*, *104*, 3621-3631, 1999.
- Richter, D. A., E. V. Browell, C. F. Butler, and N. S. Higdon, Advanced airborne UV DIAL system for stratospheric and tropospheric ozone and aerosol measurements, in *Advances in Atmospheric Remote Sensing with Lidar*, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds., pp. 395-398, Springer Verlag, New York, 1997.
- Sasano, Y., and E. V. Browell, Light scattering characteristics of various aerosol types: Multiple wavelength lidar observations, *Appl. Opt.*, *28*, 1670-1679, 1989.
- Staudt A. C., D. J. Jacob, J. A. Logan, D. Bachiochi, T. N. Krishnamurti, and G. W. Sachse, Continental sources, transoceanic transport, and interhemispheric exchange of carbon monoxide over the Pacific, *J. Geophys. Res.*, *106*, 32,571-32,589, 2001.
- Streets, D. G., G. R. Carmichael, M. Amann, and R. L. Arndt, Energy consumption and acid deposition in northeast Asia, *Ambio*, 28, 135-143, 1999.

- Sun, J. M., M. Y. Zhang, and T. S. Liu, Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relations to source area and climate, *J. Geophys. Res.*, 106, 10,325-10,333, 2001.
- Talbot, R. W., et al., Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: Results from PEM-West B, *J. Geophys. Res.*, *102*, 28,255-28,274, 1997.
- Thompson, A. M., et al., Ozone observations and a model of marine boundary-layer photochemistry during SAGA-3, *J. Geophys. Res.*, *98*, 16,955-16,968, 1993.
- Wang, Z. F., H. Ueda, and M. Y. Huang, A deflation module for use in modeling long-range transport of yellow sand over East Asia, *J. Geophys. Res.*, 105, 26,947-26,959, 2000.
- Wild, O., J. Sundet, M. J. Prather, I. S. A. Isaksen, H. Akimoto, E. Browell, and S. Oltmans, CTM ozone simulations for spring 2001 over the western Pacific: Comparisons with TRACE-P lidar, ozonesondes, and TOMS columns, *J. Geophys. Res.*, this issue.
- Wilkening, K. E., Trans-pacific air pollution: Scientific evidence & political implications, *Water Air Soil Pollut.*, *130*, 1825-1830, 2001.
- Xiao, H., G. R. Carmichael, J. Durchenwald, D. Thornton, and A. Bandy, Long-range transport of SOx and dust in East Asia during the PEM B Experiment, *J. Geophys. Res.*, 102, 28,589-28,612, 1997.
- Yienger, J. J., M. Galanter, T. A. Holloway, M. J. Phadnis, S. K. Guttikunda, G. R. Carmichael,
 W. J. Moxim, and H. Levy, The episodic nature of air pollution transport from Asia to North
 America, J. Geophys. Res., 105, 26,931-26,945, 2000.

Table 1. Air mass types.

- Reference (REF): O_3 within 20% of O_3 reference profile (RP) and low ASR_{VS} (<0.1).
- Near Surface (NS): Air with high aerosol loading (ASR_{VS}>0.5) associated with boundary layer.
- **Background Ozone Plume (BPLU):** O₃ within 20% of RP and ASR_{VS}>0.1.
- Convective Outflow/Clean Pacific (CON/CP): O₃ >20% below RP and with/without cirrus clouds in vicinity.
- **Low Ozone Plume (LPLU):** O₃ >20% below RP and ASR_{VS}>0.1.
- **High Ozone Plume (HPLU):** O₃ >20% above RP, ASR_{VS}>0.1, and less than 25% of O₃ estimated from stratosphere based on PV and assumed O₃/PV relationship.
- High Ozone Plume-Mixture (HPLM): Same as HPLU except 25-60% of O₃ estimated from stratosphere based on PV.
- <u>High Ozone Plume-SINF (HPLV):</u> Same as HPLU except more than 60% of O₃ estimated from stratosphere based on PV.
- High Ozone (HO3): $O_3 > 20\%$ above RP, ASR_{VS}<0.1, & less than 25% of O_3 estimated from stratosphere based on PV.
- High Ozone Mixture (HO3M): Same as HO3 except 25-60% of O3 estimated from stratosphere based on PV.
- <u>Stratospherically Influenced (SINF):</u> Same as HO3 except more than 60% of O₃ estimated from stratosphere based on PV.

Table 2. Aerosol characteristics by air mass category (AMC) are given for all aerosols observed in TP (top) and PWB (bottom) and for only high depolarizing aerosols (>5%) observed in TP (middle). The median, mean, standard deviation (□), and number (N) of independent measurements are given in each category. Calculated (Cal.) WVD from ASR median values is also given.

TRACE-P - All Aerosols

AMC	ASR-IR			ASR-VS			WVD				DPL						
	Median	Mean		N	Median	Mean		N	Median	Mean	Cal.		N	Median	Mean		N
REF	0.13	0.17	0.5	6471	0.05	0.06	0.1	7604			2.39		85				
NS	17.8	19.3	12	2295	1.66	1.83	1.1	2360	0.28	0.35	0.01	0.4	2082	7.6	10.6	10	2228
BPLU	0.68	1.98	4	1884	0.19	0.32	0.4	2277	1.72	1.64	1.85	0.8	1513	2.3	3.5	5	1392
LPLU	0.61	1.36	4	920	0.16	0.24	0.4	989	1.41	1.52	1.75	0.7	713	2	2.4	3	829
CON/CP	0.1	0.13	0.5	8526	0.04	0.05	0.05	9590			2.46		52				
HPLU	1.17	3.43	6	2778	0.26	0.45	0.5	3560	1.66	1.6	1.47	0.8	2525	2.5	5.6	7	1880
HPLM	1.89	4.23	6	5453	0.35	0.57	0.6	6079	1.17	1.25	1.16	0.8	4981	4.5	7.2	7	4250
HPLV	1.43	3.28	6	3607	0.3	0.5	0.6	4638	1.56	1.55	1.37	0.8	3258	6.2	8.8	8	2222
HO3	0.19	0.2	0.1	2775	0.07	0.07	0.02	3256			2.32		66				
HO3M	0.24	0.49	1.1	920	0.07	0.07	0.1	1094			1.93		62				
SINF	0.17	0.38	0.7	1037	0.05	0.06	0.04	1764			1.94		25				

TRACE-P - High-Depolarizing (>5%) Aerosols

AMC		ASI	R-IR			ASR-VS			WVD				DPL				
	Median	Mean		N	Median	Mean		N	Median	Mean	Cal.		N	Median	Mean		N
NS	20.6	22.5	12	1388	1.88	2.01	1.1	1456	0.09	0.24	-0.03	0.3	1319	12.5	14.8	9	1469
BPLU	1.93	5.94	9	235	0.3	0.62	0.8	243	0.79	0.86	0.87	0.6	211	6.6	10.1	8	246
HPLU	4.68	7.97	8	514	0.65	0.91	0.8	529	0.68	0.77	0.68	0.6	504	13.7	15.1	8	530
HPLM	2.93	6.06	8	1847	0.47	0.73	0.8	1875	0.85	0.83	0.92	0.6	1745	10.4	12.4	7	1881
HPLV	2.92	5.79	8	1261	0.52	0.79	0.8	1280	1.16	1.14	1.1	0.7	1172	10.2	13.4	9	1287

PEM West-B - All Aerosols

AMC	ASR-IR					ASF	R-VS		WVD				
	Median	Mean		N	Median	Mean		N	Median	Mean	Cal.		N
REF	0.16	0.19	0.2	3015	0.07	0.08	0.07	3063			2.61		67
NS	8.6	10.1	7	1319	1.03	1.19	0.8	1195	0.39	0.5	0.43	0.5	1054
BPLU	0.96	1.44	3	2281	0.21	0.28	0.3	2309	1.46	1.51	1.44	0.5	1754
LPLU	0.82	0.93	0.9	477	0.13	0.2	0.2	489	1.64	1.87	0.9	0.7	402
CON/CP	0.14	0.15	0.08	3636	0.07	0.07	0.02	3800			2.83		31
HPLU	5.15	8.17	9	892	0.77	1.1	1	873	0.81	0.96	0.8	0.7	763
HPLM	0.93	2.79	4	1441	0.22	0.47	0.6	1455	1.48	1.5	1.57	0.6	1320
HPLV	0.64	1.06	1.3	984	0.18	0.24	0.2	978	1.86	1.81	1.87	0.6	877
HO3	0.17	0.27	0.5	663	0.07	0.08	0.1	693			2.51		17
HO3M	0.29	0.86	2	377	0.08	0.09	0.06	370			1.83		47
SINF	0.19	0.23	0.2	714	0.07	0.07	0.03	716			2.32		41

Table 3. TRACE-P air mass composition. Values are given in pptv unless otherwise noted, and number of independent cases sampled with in situ instruments on DC-8 is given in parentheses at top unless otherwise noted next to value. Median values are given when there were five or more independent cases sampled, and average values are given when fewer cases were sampled. Note that there were no in situ data available for HO3M air mass type.

	REF (3)	NS (31)	CON/CP (18)	LPLU (1)	BPLU (3)	HPLU (9)	HPLM (22)	HPLV (16)	HO3 (11)	SINF (5)
Lat. Range, °N	21-23	14-40	14-24	20	20-25	23-44	20-39	22-43	20-29	25-36
Radar Alt., km	6.72	0.34	9.57	4.42	3.32	7.01	3.89	5.50	8.51	7.89
H ₂ O, ppmv	2325	10700	280	6100	7800	350	750	910	280	24
O ₃ , pphr	41.4	53.0	27.6	24.6	37.0	65.2	57.4	62.7	65.6	209
CO, ppbv	99.3	200	79.9	83.9	121	123	125	128	91.3	77.4
CH ₄ , ppbv	1755.0	1836.1 (30)	1751.2 (14)	1754.6	1770.7	1768.2	1786.0 (20)		1752.0 (10)	1740.6
CO ₂ , ppmv	371.3	376.3	371.3 (17)		372.6	372.7	373.1	373.2	370.8	370.4
C ₂ H ₂ (ethyne)	129	600	59.0 (17)	87.0	170	260	284 (21)	262	107	80.5
C ₂ H ₆ (ethane)	576	2060	462 (17)	508	677	911	1292 (21)	1201	532	544
C ₃ H ₈ (propane)	48.2	658	23.1 (17)	31.7	54.5	117	257 (21)	238	35.3	66.5
PAN	84.3	540	16.0 (17)	5.0	31.3	222	148 (21)	173	139 (9)	130
SO ₂	6.9	283	6.5 (15)	5.0	142.5	8.2	25.4 (19)	20.0	13.5 (7)	11.1
Acetonitrile	147	110 (25)	114 (13)	115	156.1	187 (8)	130 (21)	128 (14)	189 (8)	148
NO	34.7	21.8 (28)	26.2 (14)	3.6	4.4(2)	20.9 (8)	15.3 (18)	23.0 (14)	56.1 (9)	44.9
NO_2	14.3 (2)	92.8 (24)	6.8 (10)	5.5	2.3 (1)	14.7 (7)	20.5 (15)	29.6 (14)	29.6 (8)	40.7 (4)
HNO ₃	183	458	67.2 (16)	138	641	140	146 (19)	158	193 (8)	585
OH	0.18	0.12	0.14	0.04	0.16	0.08	0.05	0.06	0.13	0.10
HO_2	16.5	11.4	9.0	6.2	18.3	8.1	6.9	6.4	7.0	4.4
H_2O_2	1183 (2)	714	306 (13)	953	2694 (2)	404 (7)	472 (19)	374 (14)	203 (8)	83.5 (4)
НСНО	76 (2)	440 (23)	72 (15)	109	240	<50 (8)	167 (12)	83 (11)	<50 (8)	93
CH ₃ Cl	566	556	539 (17)	550	568	574	548 (21)	558	571	518
CH ₃ Br	8.1	9.0	7.8 (17)	8.3	8.0	8.6	8.7 (21)	8.6	8.1	8.3
CH ₃ CCl ₃	39.2	41.2	39.0 (17)	39.3	38.9	39.1	39.8 (21)	40.0	38.5	38.5
CH ₃ I	0.13	0.45	0.06 (17)	0.10	0.19	0.10	0.11(21)	0.13	0.04	0.02
CHBr ₃	0.41	1.38	0.51 (17)	0.54	0.43	0.62	0.69 (21)	0.77	0.32	0.22
C ₂ Cl ₄	2.8	11.4	2.3 (17)	2.6	3.0	3.1	5.0 (21)	5.6	1.7	2.0
UFA, cm ⁻³	1580	1350	3740	833	575	1640	811 (20)	982	1640	691
FAU, cm ⁻³	457	652 (26)	747	88	269	966	731 (16)	542 (12)	956	249
Nitrate		455	1.0(7)		32.0(1)	45.0 (1)	44.0 (10)	156 (5)	4.2 (3)	10.4(3)
Potassium		192 (30)	1.0 (7)		48.0 (2)	23.0(2)	32.0 (11)	38.0 (7)	11.1 (3)	1.0 (4)
Sulfate		1140	30 (7)		254 (1)	108 (1)	307 (10)	396 (6)	55 (3)	111 (3)
⁷ Be, fCi/scm		202 (26)	187 (7)		317 (1)	301 (1)	210 (9)	528 (5)	694 (3)	5200 (3)
HCFC-22	146.1	158.0	144.2 (17)	148.0	146.5	147.5	152.0 (21)	150.4	142.0	142.0
FAU/UFA	0.46	0.62 (26)	0.19	0.12	0.43	0.69	0.78 (16)	0.62 (12)	0.65	0.42
C ₂ H ₂ /CO ^a	1.19	3.30	0.78 (17)	0.98	1.28	1.92	2.20 (21)	2.12	1.16	1.26
C_3H_8/C_2H_6	0.071	0.320	0.050 (17)	0.059	0.070	0.131	0.198 (21)	0.188	0.068	0.130
O ₃ /CO	0.43	0.24	0.30	0.30	0.34	0.54	0.46	0.50	0.71	2.7
SO_4/O_3^a	0.26 (2)	26	1.3 (7)	0.24	6.4(1)	1.8 (1)	5.6 (10)	6.0 (6)	0.9 (3)	0.5 (3)
NO_2/O_3^a $^7Be/O_3^b$	0.36 (2)	1.94 (24)	0.25 (10)	0.24	0.06 (1) 8.0 (1)	0.21 (7) 5.0 (1)	0.36 (15)	0.47 (14)	0.44 (8)	0.16 (4)
Be/O ₃		3.9 (27)	7.0 (7)		8.0 (1)		4.0 (9)	8.7 (5)	10.6 (3)	20.9 (3)

^aUnits of pptv/ppbv; ^bUnits of (fCi/scm)/ppbv; FAU, ultrafine aerosols; UFA, unheated fine aerosols.

Table 4. PEM West-B air mass composition. Values are given in pptv unless otherwise noted, and number of independent cases sampled with in situ instruments on DC-8 is given in parentheses at top unless otherwise noted next to value. Median values are given when there were five or more independent cases sampled, and average values are given when fewer cases were sampled. Note that there were no in situ data available for HO3M or LPLU air mass types.

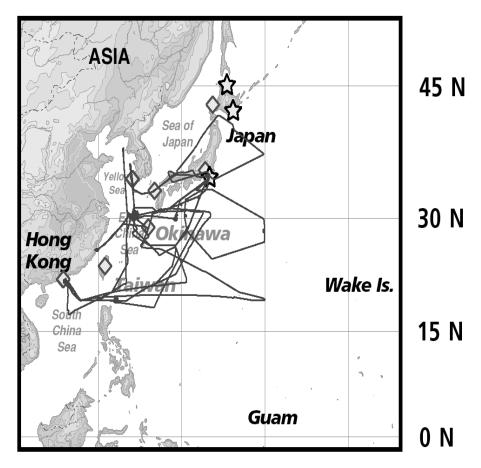
	REF (5)	NS (5)	CON/CP (4)	BPLU (13)	HPLU (7)	HPLM (2)	HPLV (3)	HO3 (4)	SINF (2)
Lat. Range, °N	16-28	15-29	9-25	27-45	16-28	22-31	43-46	13-20	38-45
Radar Alt., km	3.41	0.35	8.11	5.58	2.83	3.25	6.03	4.46	10.19
Dew pt. Deg C	-38.9	4.8	-36.1	-39.6	-1.8	-31.7	-56.5	-29.7	-64.2
O ₃ , ppbv	46.4	47.2	27.8	44.1	50.4	49.8	63.9	56.7	375
CO, ppbv	91.9	159	86.0	152	240	145	144	100	41.9
CH ₄ , ppbv	1735.8 (4)	1786.8	1717.0	1770.0	1763.2 (3)	1763.3	1768.2	1719.4	1631.9
CO ₂ , ppmv	358.7	361.5	358.0	360.8	361.5	360.5	360.7	358.6	355.5
C ₂ H ₂ (ethyne)	97.4	572	77.7	477	794	458	444	122	12.6
C ₂ H ₆ (ethane)	704	1890	558	1650	1640	1500	1700	704	139
C ₃ H ₈ (propane)	91.9	666	52.2	445	314	403	564	82.5	14.7
PAN	151	294	29.8	266	595 (5)	285	254 (2)	88.1 (3)	38.0
SO_2	45.6 (4)	62.0	22.4	47.9 (11)	40.0 (6)	38.2		22.2 (3)	54.1
NO	20.6	18.3	62.6	11.2	32.4	18.2	12.2(1)	21.2	43.1 (1)
NO_v	632	683	349	670	1590	761	687 (1)	421 (3)	1610(1)
HNO ₃	199.8 (3)	118	186 (3)	148 (7)	974 (6)	196 (1)		303 (2)	1766
H_2O_2	258	337	588	394 (12)	3080	565	113	813	98.7
CH ₃ Cl	558	554	565	585	636	570	557	562	478
CH ₃ Br	9.4	10.5	9.7	12.0	11.2	10.1	11.8	10.0	8.3
CH ₃ CCl ₃	119	134	119	126	122	126	120	119.8	88 (1)
CH ₃ I	0.07	0.43	0.10	0.14	0.48	0.13	0.09	0.08	0.05
C_2Cl_4	6.2	18.8	4.6	13.0	8.9	11.4	12.0	5.5	1.83
Aerosol, cm ⁻³	556	844	639	442	1360	596	259 (1)	454	108 (1)
Nitrate	57 (2)	112 (4)	5.8 (2)	60.0 (5)	87 (2)			<5.0(1)	<5.0(1)
Potassium	115 (2)	33 (4)	<25 (2)	37.8 (5)	206 (2)			<25 (1)	<25 (1)
Sulfate	124(2)	306 (4)	9.4(2)	273 (5)	274 (2)			12.0(1)	169 (1)
⁷ Be, fCi/scm	175 (2)	198 (4)	95 (2)	186 (5)	227 (2)			442 (1)	3760 (1)
C_2H_2/CO^a	1.05	3.67	0.90	3.45	3.32	3.10	3.03	1.16	0.27
C_3H_8/C_2H_6	0.123	0.361	0.091	0.265	0.178	0.250	0.316	0.108	0.161
O ₃ /CO	0.43	0.30	0.32	0.29	0.27	0.35	0.51	0.58	9.8
SO_4/O_3^a	2.6(2)	6.7	0.3(2)	6.1 (5)	5.7(2)			0.4(2)	0.7(1)
NO_y/O_3^a	12.5	15.7	12.1	15.1	32.7	15.2	13.2(1)	7.2 (3)	5.9 (1)
⁷ Be/O ₃ ^b	3.7 (2)	5.4 (4)	3.7(2)	4.4 (5)	4.7 (2)			7.3 (1)	15.1 (1)

^aUnits of pptv/ppbv; ^bUnits of (fCi/scm)/ppbv.

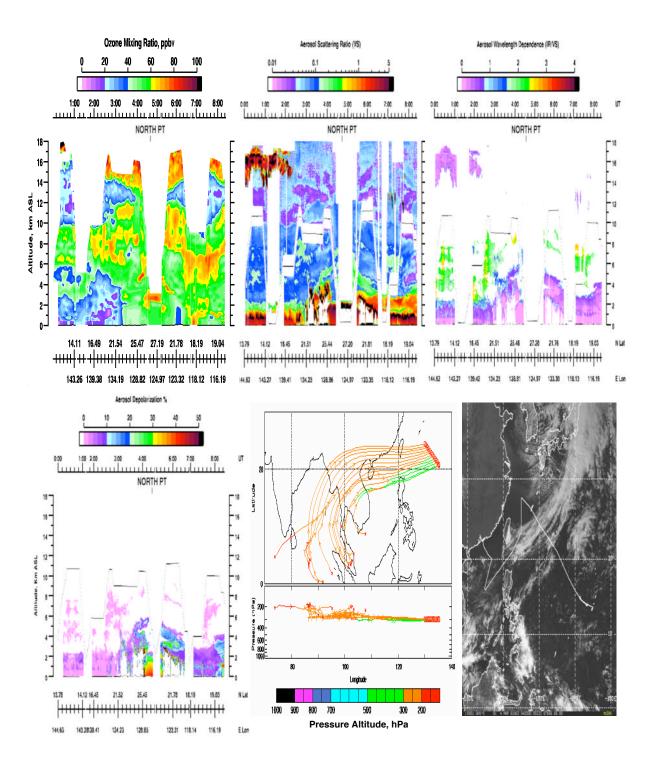
Table 5. Estimated O₃, CO, CO₂, and CH₄ total flux for TP based on average air mass composition and average flux estimated for each air mass type.

AMC	O ₃ (Tg/day)	CO (Tg/day)	CO_2 (10 ³ Tg/day)	CH ₄ (Tg/day)
REF	0.43	0.60	3.5	6.0
NS	0.11	0.23	0.7	1.2
BPLU	0.16	0.32	1.5	2.6
LPLU	0.00	0.01	0.0	0.1
CON/CP	0.24	0.41	3.0	5.2
HPLU	0.40	0.45	2.1	3.7
HPLM	0.82	1.04	4.9	8.5
HPLV	1.21	1.44	6.6	11.5
НО3	0.36	0.29	1.9	3.2
SINF	1.82	0.39	3.0	5.1
TOTAL ^a	5.55	5.18 (2.2 of C)	27.2 (7.4 of C)	47.1 (35 of C)

^aDoes not include HO3M category


Table 5. Asian flux estimate based on difference between total eastward O₃, CO, CO₂, and CH₄ flux (Table 4) and estimated eastward background flux for each gas.

	Asian Flux (REF-based Bkgnd ^a) (Tg/day)	Asian Flux (CO ₂ - based Bkgnd ^b) (Tg/day)
O_3	2.26	
CO	0.56 (0.24 of C)	0.34 (0.14 of C)
CO_2		18.0 (4.9 of C)
CH ₄		0.076 (0.057 of C)


^aBased on background values given for REF air mass type in Table 3.

^bBased on background CO₂ of 372 ppmv and correlation of CO₂ with CO and CH₄.

105 E 120 E 135 E 150 E 165 E

Figure 1. Flight tracks for NASA DC-8 aircraft in the western Pacific during TRACE-P. Ground-based remote gas measurements locations are indicated by stars and ozonesonde stations are indicated by diamonds.

Plate 1. Ozone (top left), aerosol scattering ratio (top center), aerosol backscatter wavelength dependence (top right), and aerosol depolarization distributions (bottom left) observed on flight from Guam to Hong Kong on 4 March 2001 (Flight 6). Also shown are 5-day backward trajectories that end at 300 hPa on a portion of the flight track and a GOES-8 visible satellite image with flight track superimposed. The aircraft flight altitude is shown on the aerosol plots as a continuous black line. In situ O₃ measurements were used to constrain and interpolate the O₃ data across the DIAL measurement gap near the aircraft.

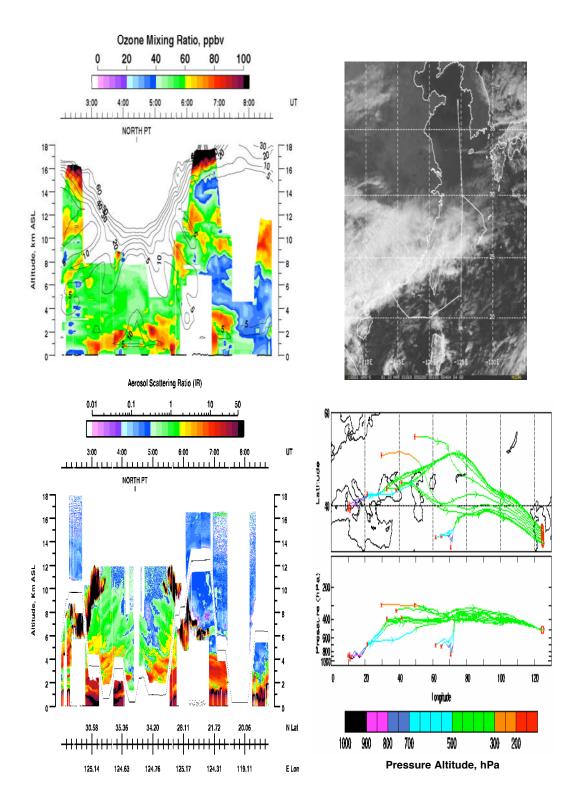
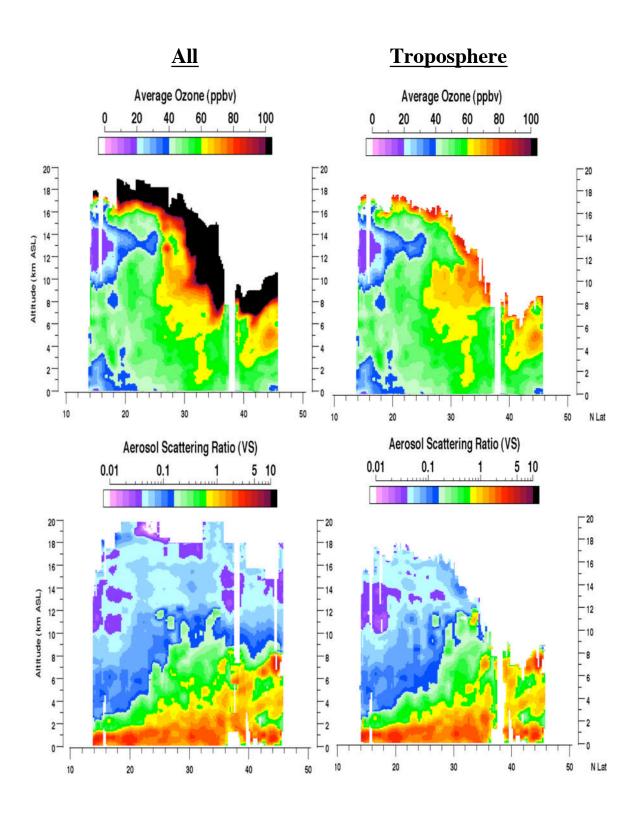
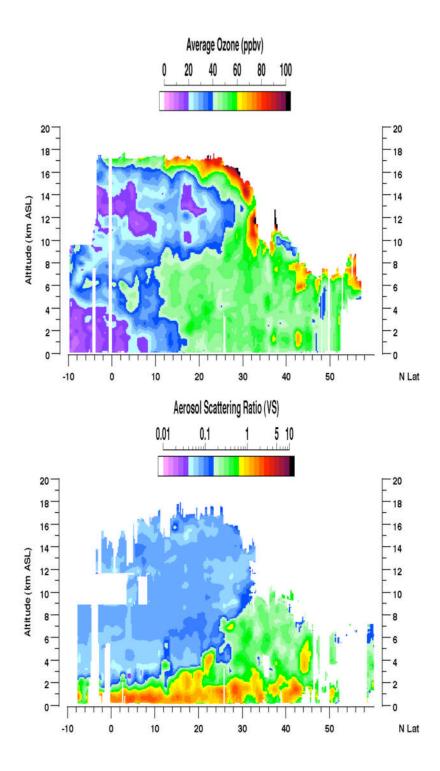



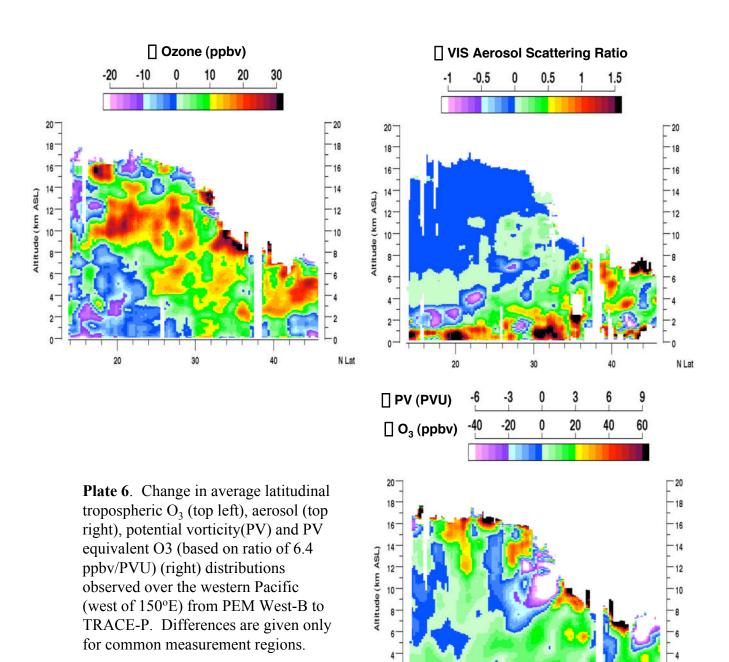
Plate 2. Ozone with PV isopleths (≤60 PVU) (top left) and IR aerosol scattering ratios (bottom left) observed on flight from Okinawa to Yellow Sea to Hong Kong on 10 March 2001 (Flight 9). Also shown are the GOES-8 visible satellite image with flight track superimposed (upper right) and 5-day backward trajectories that end at 500 hPa on the Yellow Sea portion of the flight track (lower right).

Plate 3. Average latitudinal O_3 (top) and aerosol (bottom) distributions observed during TRACE-P over the western Pacific (west of 150°E). Left panels include all data (tropospheric and stratospheric) and right panels include only tropospheric data.

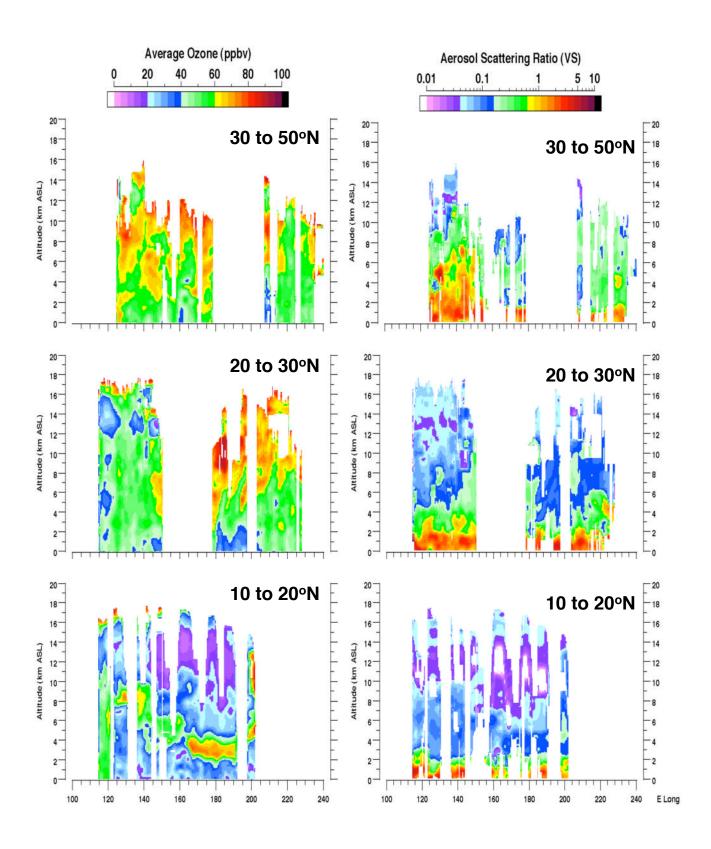
All Potential Vorticity Average Potential Vorticity (107 Kxm²/(kgxs)) 0.50 1 5 10 20-18-16-Altitude (km ASL) 12-30 **Tropospheric Potential Vorticity** Average Potential Vorticity (107 Kxm2/(kgxs)) -20 18-Altitude (km ASL) 12-10-

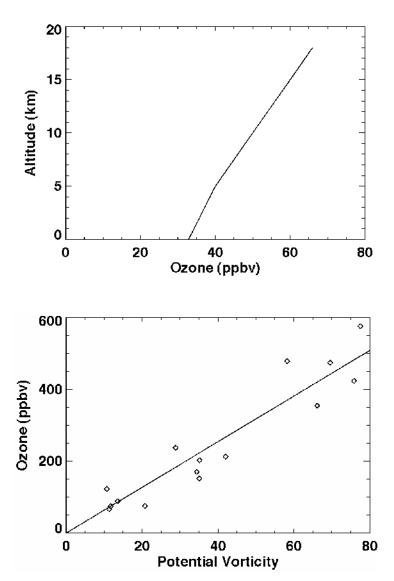

Plate 4. Average total (top) and tropospheric (bottom) latitudinal potential vorticity distributions obtained during TRACE-P.

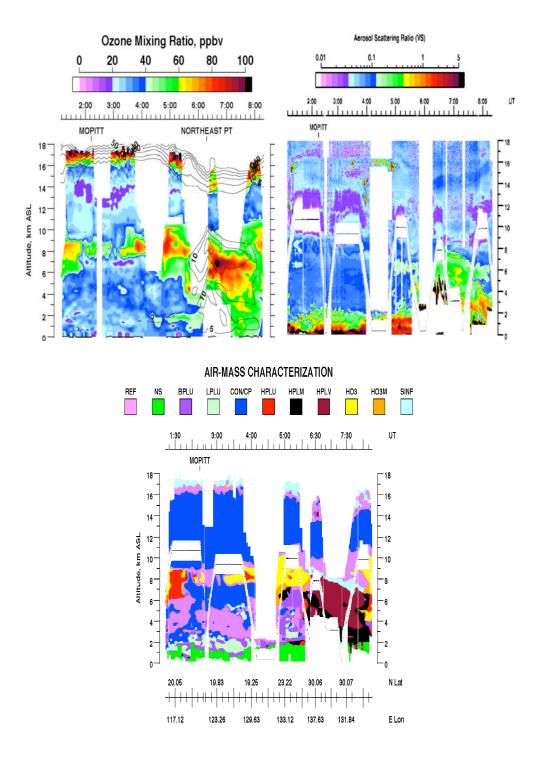
40

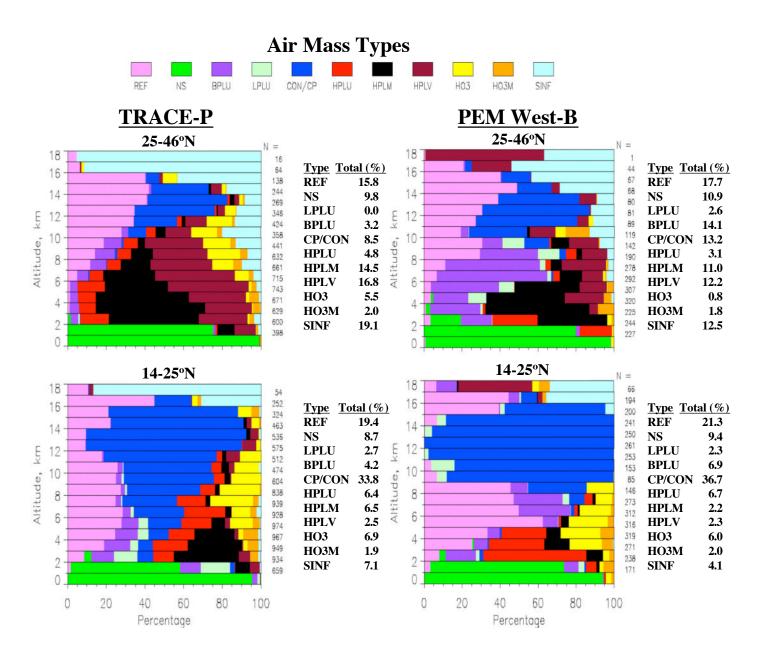

N Lat

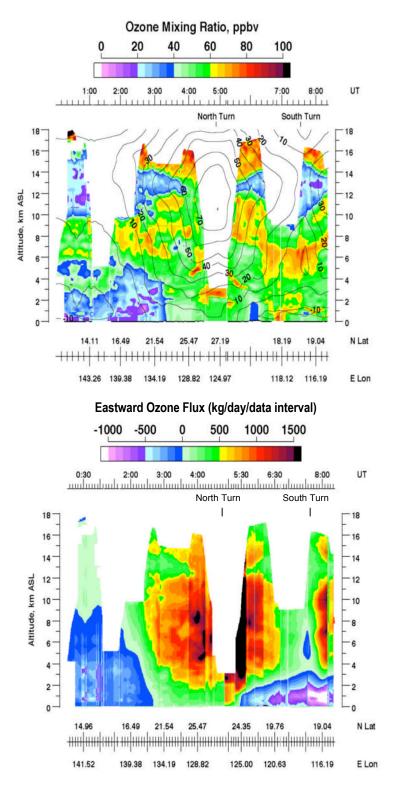
30


20


Plate 5. Average latitudinal tropospheric ozone (top) and aerosol scattering ratio (bottom) distributions observed during PEM West-B over the western Pacific (west of 150°E).


N Lat


Plate 7. Average longitudinal tropospheric ozone (left) and aerosol (right) distributions observed during TRACE-P over the western Pacific in the latitudinal regions shown.


Figure 2. Ozone discriminator (top) used in air mass characterization for TRACE-P and PEM West-B and ozone and PV data (bottom) from TRACE-P and PEM West-B in situ measurements and ECMWF meteorological analysis that were used to determine the ozone to PV relationship in lower stratosphere of 6.4 ppbv/PVU.

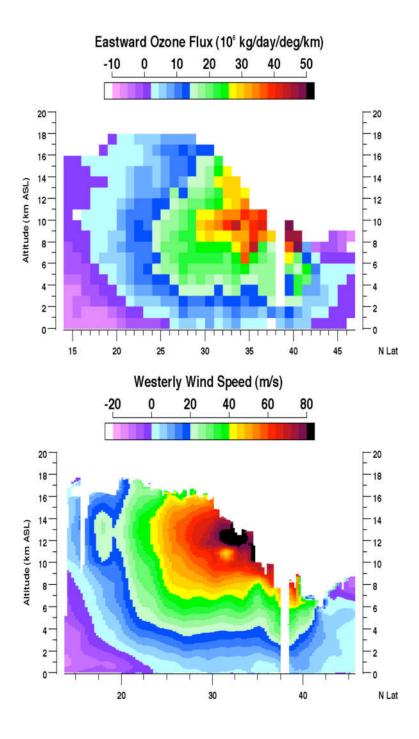

Plate 8. Ozone with PV isopleths in PVU (top left), aerosol scattering ratios (top right), and air mass characterization (bottom) for flight from Hong Kong to Okinawa on 17 March 2001 (Flight 11).

Plate 9. Percentage of time air mass types were observed during TRACE-P and PEM West-B in the low (14-25°N) and mid (25-46°N) latitude regions over the western Pacific (west of 150°E).

Plate 10. Example of eastward O_3 flux distribution (bottom) calculated from O_3 distribution observed on flight from Guam to Hong Kong on 3-4 March 2001 (Flight 6) (top) and westerly wind component (isopleth overlay, m/s). The eastward flux component is calculated at uniform data intervals along flight track, and thus the abrupt horizontal changes in the flux distribution are due to changes in flight direction (see Plate 1 for flight track and major turn points are indicated above).

Plate 11. Average latitudinal eastward O_3 flux (top) and westerly wind speed distributions obtained on all TRACE-P flights west of 150°E.

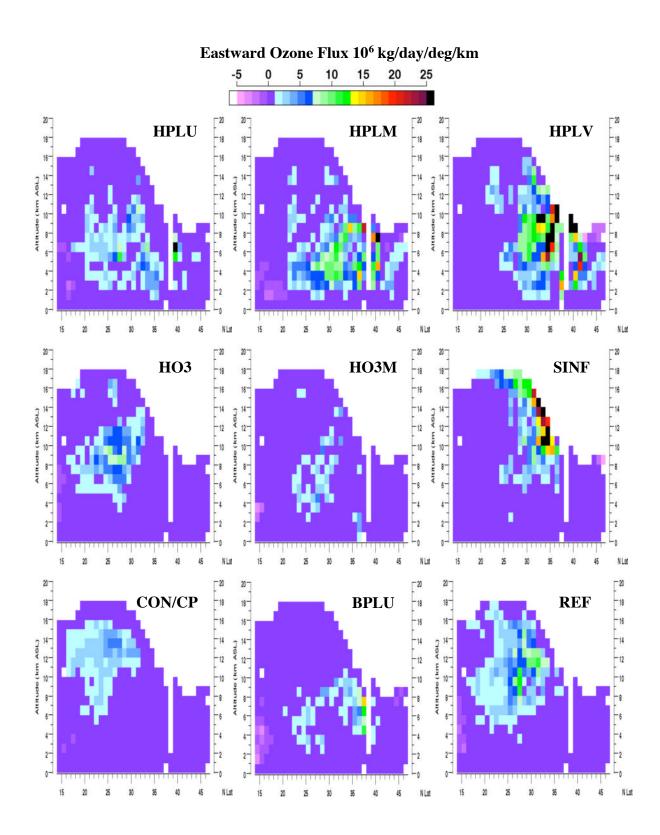
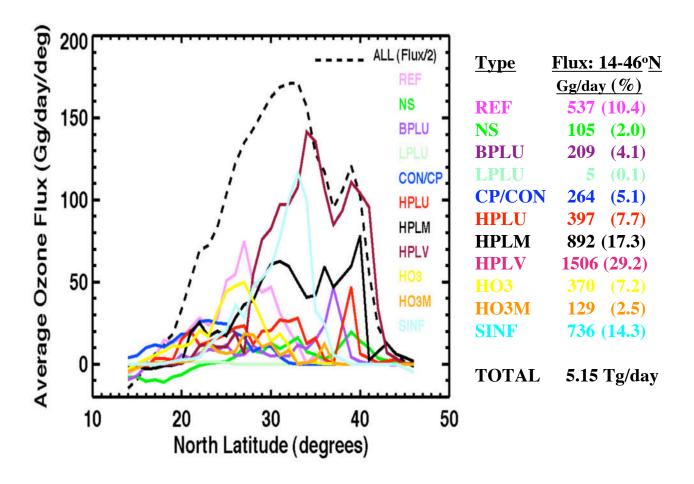



Plate 12. Eastward average O₃ flux by air mass category.

Plate 13. Average eastward tropospheric O_3 flux distribution by air mass type obtained west of 150°E and total O_3 flux by air mass type in 14-46°N region.